Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018419

RESUMO

The chirality transfer phenomenon is attractive for enhancing the optical functionality of nanomaterials by inducing sensitivity to the circular polarization states of photons. An underexplored aspect is how material properties of the achiral semiconductor impact the induced chiroptical signatures. Here we apply atomistic time-dependent density functional theory simulations to investigate the material properties that influence the chiroptical signatures of a lead halide perovskite nanocrystal with a chiral molecule bound to the surface. First, we find that both lattice disorder created by surface strain and halide substitution can increase the chiroptical response of the perovskite quantum dots by an order of magnitude. Both phenomena are attributed to a broadening of the density of the electronically excited states. Second, the intensity of the anisotropy spectra decreases with increasing dot size with a power law decay. Overall, these insights can be used to help guide experimental realization of highly resolvable polarized optical features in semiconducting nanomaterials.

2.
J Phys Chem Lett ; 13(2): 686-693, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35023749

RESUMO

Chiroptical properties are of interest for various applications, including structure determination, polarized photodetectors, and spintronics. Inducing chiroptical activity into semiconductors is challenging because of difficulties in creating asymmetric crystal structures. One promising method is to use chirality transfer by deploying chiral organic molecules as capping ligands for nanocrystals. Experimentally, chiral-capped nanocrystals show emergent chiroptical signatures, but the mechanisms for chirality transfer remain unclear. Here we utilize atomistic modeling using time-dependent density functional theory calculations to explore chirality transfer in CsPbX3 (X = Cl, I) clusters capped with chiral diaminocyclohexane (DACH) enantiomers. When DACH enantiomers are bound to the cluster surface, the perovskite optical transitions gain chiral signatures. This observed chirality transfer is best rationalized by chiral molecular dipole-cluster transition dipole coupling. With multiple DACH molecules bound to the cluster surface, anisotropy factors are found to increase proportionally to the surface ligand density, providing mechanistic insight toward improving chiroptical functionality in semiconductor nanomaterials.

3.
RSC Adv ; 11(3): 1635-1643, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424126

RESUMO

Synchrotron radiation electronic circular dichroism (SRECD) and anisotropy spectroscopy for both enantiomers of a group of small non-planar chiral molecules are reported here. The experimental SRECD spectra are compared to computational ECD spectra generated using time-dependent density functional theory and a thermal averaging over relevant molecular configurations. The combination of these experimental and computational characterization methodologies for such molecules enables the prediction and understanding of the spectral behavior of other small molecules, in addition to chiroptically characterizing members of the mandelic acid family substructure. Enantiomeric purity of samples can be evaluated in comparison with these spectra and the extent of photolytic enantioinduction can also be predicted using these experimental/calculated SRECD and anisotropy spectra.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32863890

RESUMO

Up to 85% of the US adult population carries herpes simplex virus type-1 (HSV-1), with a smaller percentage (22%) infected with HSV-2. Herpesviruses can survive in lytic phase, when the viruses are actively replicating, or in latency, when the virus is functionally dormant in ganglia. Among drugs to treat these infections is acyclovir (ACV). ACV exhibits poor oral bioavailability and a short in vivo half-life; only about 10-15% of ingested drug enters the bloodstream and its half-life is about 3 hours. With those disadvantages and the possibility of poor patient compliance, viral replication may not always be suppressed. To abrogate these shortcomings we propose local distribution via sustained drug release. We present a matrix-based antiherpetic ring, composed of poly(ethylene co-vinyl acetate), that releases ACV directly to the vaginal epithelium. A 30-day in vitro drug release trial showed that approximately 135 +/- 20 µg/day of ACV was consistently released. Rings were nontoxic in cell culture and suppressed primary HSV-1 and HSV-2 replication. We expect these data form the basis for novel interventions in human health, where new prophylactics and therapeutics against genital herpes are truly needed.

5.
Angew Chem Int Ed Engl ; 57(46): 15128-15132, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30272384

RESUMO

The power of the Cloud has been harnessed for pharmaceutical compound production with remote servers based in Tokyo, Japan being left to autonomously find optimal synthesis conditions for three active pharmaceutical ingredients (APIs) in laboratories in Cambridge, UK. A researcher located in Los Angeles, USA controlled the entire process via an internet connection. The constituent synthetic steps for Tramadol, Lidocaine, and Bupropion were thus optimized with minimal intervention from operators within hours, yielding conditions satisfying customizable evaluation functions for all examples.


Assuntos
Analgésicos Opioides/síntese química , Anestésicos Locais/síntese química , Antidepressivos de Segunda Geração/síntese química , Bupropiona/síntese química , Técnicas de Química Sintética/métodos , Lidocaína/síntese química , Tramadol/síntese química , Técnicas de Química Sintética/economia , Técnicas de Química Sintética/instrumentação , Computação em Nuvem/economia , Indústria Farmacêutica/economia , Indústria Farmacêutica/instrumentação , Indústria Farmacêutica/métodos , Desenho de Equipamento , Japão , Reino Unido , Estados Unidos
6.
Chirality ; 26(8): 373-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829143

RESUMO

The basic units that constitute essential biopolymers (proteins and nucleic acids) are enantiomerically biased. Proteins are constructed from L-amino acids and nucleic acids possess a backbone composed exclusively of D-sugars. Photochirogenesis has been postulated to be the source of this homochirality of biomolecules: Asymmetric photochemical reactions were catalyzed by circularly polarized light (cpl) in interstellar environments and generated the first chiral prebiotic precursors. Enantiomers absorb cpl differently and this difference can dictate the kinetics of asymmetric photochemical reactions. These differences in absorption can be studied using circular dichroism (CD) and anisotropy spectroscopy. Rather than measuring the CD spectrum alone, the anisotropy factor g is recorded (CD divided by absorption). This factor g is directly related to the maximum achievable enantiomeric excess. We now report on the substantial influence of solvent and molecular surroundings on CD and anisotropy spectroscopy. This shows for the first time that CD and anisotropy signals depend just as much on the molecular surroundings of a molecule as on the nature of the molecule itself. CD and g spectra of amino acids in different solvents and in the solid state are presented here and the influence of these different surroundings on the spectra is discussed.


Assuntos
Aminoácidos/química , Processos Fotoquímicos , Solventes/química , Anisotropia , Dicroísmo Circular , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
7.
Angew Chem Int Ed Engl ; 53(1): 210-4, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24227543

RESUMO

Circularly polarized light (CPL) is known to be a true chiral entity capable of generating absolute molecular asymmetry. However, the degree of inducible optical activity depends on the λ of the incident CPL. Exposure of amorphous films of rac-alanine to tunable CPL led to enantiomeric excesses (ee) which not only follow the helicity but also the energy of driving electromagnetic radiation. Postirradiation analyses using enantioselective multidimensional GC revealed energy-controlled ee values of up to 4.2 %, which correlate with theoretical predictions based on newly recorded anisotropy spectra g(λ). The tunability of asymmetric photochemical induction implies that both magnitude and sign can be fully controlled by CPL. Such stereocontrol provides novel insights into the wavelength and polarization dependence of asymmetric photochemical reactions and are highly relevant for absolute asymmetric molecular synthesis and for understanding the origins of homochirality in living matter.

8.
Nucleic Acids Res ; 41(15): 7453-61, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771141

RESUMO

G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions.


Assuntos
Quadruplex G , Motivos de Nucleotídeos , Oligonucleotídeos/genética , Pareamento de Bases , Sequência de Bases , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Desnaturação de Ácido Nucleico , Oligonucleotídeos/química , Regiões Promotoras Genéticas , Temperatura , Termodinâmica
9.
Top Curr Chem ; 333: 41-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22976459

RESUMO

Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.


Assuntos
Aminoácidos/biossíntese , Aminoácidos/química , Meio Ambiente Extraterreno/química , Aminoácidos/análise , Estereoisomerismo
10.
Chem Soc Rev ; 41(16): 5447-58, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22576562

RESUMO

The primordial appearance of chiral amino acids was an essential component of the asymmetric evolution of life on Earth. In this tutorial review we will explore the original life-generating, symmetry-breaking event and summarise recent thoughts on the origin of enantiomeric excess in the universe. We will then highlight the transfer of asymmetry from chiral photons to racemic amino acids and elucidate current experimental data on the photochemical synthesis of amino and diamino acid structures in simulated interstellar and circumstellar ice environments. The chirality inherent within actual interstellar (cometary) ice environments will be considered in this discussion: in 2014 the Rosetta Lander Philae onboard the Rosetta space probe is planned to detach from the orbiter and soft-land on the surface of the nucleus of comet 67P/Churyumov-Gerasimenko. It is equipped for the in situ enantioselective analysis of chiral prebiotic organic species in cometary ices. The scientific design of this mission will therefore be presented in the context of analysing the formation of amino acid structures within interstellar ice analogues as a means towards furthering understanding of the origin of asymmetric biological molecules.


Assuntos
Aminoácidos/análise , Meio Ambiente Extraterreno/química , Aminoácidos/síntese química , Evolução Química , Exobiologia , Gelo/análise , Meteoroides , Modelos Moleculares , Origem da Vida , Fotoquímica , Estereoisomerismo
11.
Org Biomol Chem ; 9(5): 1661-6, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21270981

RESUMO

The efficiencies of DNA-templated acyl transfer reactions between a thioester modified oligonucleotide and a series of amine and thiol based nucleophiles are directly compared. The reactivity of the nucleophile, reaction conditions (solvent, buffer, pH) and linker length all play important roles in determining the efficiency of the transfer reaction. Careful optimisation of the system enables the use of DNA-templated synthesis to form stable peptide-like bonds under mild aqueous conditions close to neutral pH.


Assuntos
Materiais Biomiméticos/química , DNA/química , Peptídeos/química , Aminas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Oligonucleotídeos/química , Compostos de Sulfidrila/química , Temperatura
12.
Biomol Concepts ; 1(2): 197-213, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25961997

RESUMO

The helical duplex architecture of DNA was discovered by Francis Crick and James Watson in 1951 and is well known and understood. However, nucleic acids can also adopt alternative structural conformations that are less familiar, although no less biologically relevant, such as the G-quadruplex. G-quadruplexes continue to be the subject of a rapidly expanding area of research, owing to their significant potential as therapeutic targets and their unique biophysical properties. This review begins by focusing on G-quadruplex structure, elucidating the intermolecular and intramolecular interactions underlying its formation and highlighting several substructural variants. A variety of methods used to characterize these structures are also outlined. The current state of G-quadruplex research is then addressed by proffering seven pertinent questions for discussion. This review concludes with an overview of possible directions for future research trajectories in this exciting and relevant field.

13.
Org Biomol Chem ; 7(4): 747-60, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19194591

RESUMO

A new and efficient desymmetrisation of succinic and glutaric cyclic meso-anhydrides is described, providing excellent yields and diastereoselectivities in most cases. Derivatisation of the desymmetrised products is demonstrated by their conversion into mono-protected 1,4-diols. General synthetic utility of the method is established by its application towards a key fragment in the total synthesis of the immunosuppressant antitumour natural product, rapamycin.


Assuntos
Anidridos/química , Produtos Biológicos/síntese química , Imunossupressores/síntese química , Métodos , Sirolimo/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...