Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 6(4): txac135, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36381950

RESUMO

Mitigation options to reduce the risk of foreign animal disease entry into the United States may lead to degradation of some vitamins. The objective of Exp. 1 was to determine the impact of 0, 30, 60, or 90 d storage time on water-soluble vitamin (riboflavin, niacin, pantothenic acid, and cobalamin) stability when vitamin premix (VP) and vitamin trace mineral premix (VTM) were blended with 1% inclusion of medium-chain fatty acid (MCFA) (1:1:1 blend of C6:C8:C10) or mineral oil (MO) with different environmental conditions. Samples stored at room temperature (RT) (approximately 22 °C) or in an environmentally controlled chamber set at 40 °C and 75% humidity, high temperature high humidity (HTHH). The sample bags were pulled out at day 0, 30, 60, and 90 for RT condition and HTHH condition. Therefore, treatments were analyzed as a 2 × 2 × 2 × 3 factorial, with two premix types (vitamin premix vs. VTM), two oil types (MO vs. MCFA), two storage conditions (RT vs. HTHH), and three time points (day 30, 60, and 90). The objective of Exp. 2 was to determine the effect of heat pulse treatment and MCFA addition on water-soluble vitamin (riboflavin, niacin, pantothenic acid, and cobalamin) stability with two premix types. A sample from each treatment was heated at 60 °C and 20% humidity. Therefore, treatments were analyzed as a 2 × 2 factorial, with two premix types (VP vs. VTM) and two oil types (MO vs. MCFA). For Exp. 1, the following effects were significant for riboflavin: main effect of premix type (P < 0.0001), storage condition (P = 0.015), and storage time (P < 0.0001); for pantothenic acid: premix type × storage time × storage condition (P = 0.003) and premix type × oil type (P < 0.0001) interactions; and for cobalamin: premix type × storage condition (P < 0.0001) and storage time × storage condition (P < 0.0001) interactions and main effect of oil type (P = 0.018). The results of Exp. 2 demonstrated that there was an interaction between oil type and premix type for only pantothenic acid (P = 0.021). The oil type did not affect the stability of riboflavin, niacin, or cobalamin and pantothenic acid stability was not different within similar premixes. The only difference in water-soluble vitamin stability between VP and VTM was for pantothenic acid (P < 0.001). The results of this experiment demonstrated that the stability of water soluble vitamins are dependent on the vitamin of interest and the conditions at which it is stored.

2.
Transl Anim Sci ; 5(3): txab043, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34485831

RESUMO

The objective of this experiment was to determine the effect of conditioning temperature and die speed on pellet quality and enzyme stability of phytase and xylanase. Treatments were initially arranged as a 2 × 3 factorial of conditioning temperature (74 and 85 °C) and die speed (127, 190, and 254 rpm); however, when conditioning at 85 °C, it was not possible to pellet at 127 rpm. Thus, data were analyzed in two different segments using the GLIMMIX procedure of SAS. First, linear and quadratic contrasts were utilized to test the response to increasing die speed at 74 °C. Second, the data was analyzed as a 2 × 2 factorial of conditioning temperature (74 and 85 °C) and die speed (190 and 254 rpm). Treatments were arranged in a completely randomized design and replicated three times. Diets were conditioned for approximately 30 s and pelleted with a 4.8-mm-diameter × 44.5-mm-effective length die at a rate of 4.5 MT/h. Pellet durability index (PDI) was determined using the tumble box and Holmen NHP 100 methods. Samples of the unconditioned mash (M), conditioned mash (CM), and pellets (P) were collected and analyzed for phytase and xylanase concentration. Relative enzyme stabilities were expressed as CM:M, P:CM, and P:M. Stabilities expressed as P:M were used an indication of enzyme stability through the entire pelleting process. Diets conditioned at 74 °C showed no evidence of difference in phytase or xylanase P:M stability when decreasing die speed from 254 to 127 rpm. However, when conditioning diets at 74 °C, decreasing die speed increased (linear, P < 0.001) PDI. There was no conditioning temperature × die speed interaction for overall xylanase P:M stability or PDI. However, there was a conditioning temperature × die speed interaction (P < 0.01) for phytase P:M stability. When conditioning diets at 85 °C, increasing die speed decreased phytase P:M stability. However, when conditioning at 74 °C, increasing die speed did not influence phytase P:M stability. For main effects of conditioning temperature, increasing temperature improved (P < 0.001) PDI with no evidence of difference for xylanase P:M stability. For the main effects of die speed (254 vs. 190 rpm), decreasing die speed decreased (P < 0.001) the P:M xylanase stability, but there was no evidence of difference for PDI. The results of this trial indicate that die speed should be taken into consideration when evaluating enzyme stability of both phytase and xylanase as pellet mill models may be operating at different speeds. Additionally, increasing conditioning temperature will improve PDI but may result in decreased phytase stability.

3.
Transl Anim Sci ; 4(3): txaa143, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33094271

RESUMO

Feed ingredients and additives could be a potential medium for foreign animal disease entry into the United States. The feed industry has taken active steps to reduce the risk of pathogen entry through ingredients. Medium chain fatty acid (MCFA) and heat pulse treatment could be an opportunity to prevent pathogen contamination. The objective of experiment 1 was to determine the impact of 0, 30, 60, or 90 d storage time on fat-soluble vitamin stability when vitamin premix (VP) and vitamin trace mineral premix (VTM) were blended with 1% inclusion of MCFA (1:1:1 blend of C6:C8:C10) or mineral oil (MO) with different environmental conditions. Samples stored at room temperature (RT) (~22 °C) or in an environmentally controlled chamber set at 40 °C and 75% humidity, high-temperature high humidity (HTHH). The sample bags were pulled out at days 0, 30, 60 and 90 for RT condition and HTHH condition. The objective of experiment 2 was to determine the effect of heat pulse treatment and MCFA addition on fat-soluble vitamin stability with two premix types. A sample from each treatment was heated at 60 °C and 20% humidity. For experiment 1, the following effects were significant for vitamin A: premix type × storage condition (P = 0.031) and storage time × storage condition (P = 0.002) interactions; for vitamin D3: main effect of storage condition (P < 0.001) and storage time (P = 0.002); and for vitamin E: storage time × storage condition interaction (P < 0.001). For experiment 2, oil type did not affect the stability of fat-soluble vitamins (P > 0.732) except for vitamin A (P = 0.030). There were no differences for fat-soluble vitamin stability between VP and VTM (P > 0.074) except for vitamin E (P = 0.016). Therefore, the fat-soluble vitamins were stable when mixed with both vitamin and VTM and stored at 22 °C with 28.4% relative humidity (RH). When premixes were stored at 39.5 °C with 78.8%RH, the vitamin A and D3 were stable up to 30 d while the vitamin E was stable up to 60 d. In addition, MCFA did not influence fat-soluble vitamin degradation during storage up to 90 d and in the heat pulse process. The vitamin stability was decreased by 5% to 10% after the premixes was heated at 60 °C for approximately nine and a half hours. If both chemical treatment (MCFA) and heat pulse treatment have similar efficiency at neutralizing or reducing the target pathogen, the process of chemical treatment could become a more practical practice.

4.
Transl Anim Sci ; 4(3): txaa049, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32705074

RESUMO

Potential use of medium-chain fatty acids (MCFA), increased temperatures and exposure time may be implemented to mitigate biological hazards in premixes and feed ingredients. However, there are no data on how these strategies influence phytase stability. For Exp. 1, there were no four- and three-way interactions among premix type (PT), oil type (OT), storage condition (SC), and storage time (ST) for phytase stability (P > 0.111). There were two-way interactions for PT × SC (P < 0.001) and SC × ST (P < 0.001). The OT did not affect phytase stability when premixes-containing phytase were added as either mineral oil (MO) or MCFA (P = 0.382). For Exp. 2, there was no interaction between PT and OT (P = 0.121). There were also no differences for phytase stability between vitamin premix (VP)- and vitamin trace mineral (VTM) premix-containing phytase were heated at 60 °C (P = 0.141) and between premixes-containing phytase were mixed with 1% MO added and 1% MCFA (P = 0.957). Therefore, the phytase was stable when mixed with both VP and VTM premix and stored at 22 °C with 28.4% relative humidity (RH). The phytase stability was dramatically decreased when the phytase was mixed with premixes and stored at 39.5 °C with 78.8% RH. Also, MCFA did not influence phytase degradation during storage up to 90 d and in the heat pulse process. The phytase activity was decreased by 20% after the premixes containing the phytase was heated at 60 °C for approximately 9.5 h. If both MCFA and heat pulse treatment have similar efficiency at neutralizing or reducing the target pathogen, the process of chemical treatment could become a more practical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...