Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 63(11): 667-72, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20924381

RESUMO

Many Actinomycetes aminoglycosides are widely used antibiotics. Although mainly antibacterials, a few known aminoglycosides also inhibit yeasts, protozoans and important crop pathogenic fungal oomycetes. Here we show that attachment of a C8 alkyl chain to ring III of a neamine-based aminoglycoside specifically at the 4″-o position yields a broad-spectrum fungicide (FG08) without the antibacterial properties typical for aminoglycosides. Leaf infection assays and greenhouse studies show that FG08 is capable of suppressing wheat fungal infections by Fusarium graminearum-the causative agent of Fusarium head blight-at concentrations that are minimally phytotoxic. Unlike typical aminoglycoside action of ribosomal protein translation miscoding, FG08's antifungal action involves perturbation of the plasma membrane. This antibacterial to antifungal transformation could pave the way for the development of a new class of aminoglycoside-based fungicides suitable for use in crop disease applications. In addition, this strategy is an example of reviving a clinically obsolete drug by simple chemical modification to yield a new application.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Canamicina/análogos & derivados , Trissacarídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/toxicidade , Antibacterianos/química , Antifúngicos/química , Antifúngicos/toxicidade , Membrana Celular/efeitos dos fármacos , Produtos Agrícolas/microbiologia , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/toxicidade , Canamicina/farmacologia , Doenças das Plantas/microbiologia , Folhas de Planta , Trissacarídeos/química , Trissacarídeos/toxicidade , Triticum/microbiologia
2.
Plant Cell Rep ; 26(4): 479-88, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17103001

RESUMO

Fusarium head blight (FHB) of wheat, caused by Fusarium graminearum and other Fusarium species, is a major disease problem for wheat production worldwide. To combat this problem, large-scale breeding efforts have been established. Although progress has been made through standard breeding approaches, the level of resistance attained is insufficient to withstand epidemic conditions. Genetic engineering provides an alternative approach to enhance the level of resistance. Many defense response genes are induced in wheat during F. graminearum infection and may play a role in reducing FHB. The objectives of this study were (1) to develop transgenic wheat overexpressing the defense response genes alpha-1-purothionin, thaumatin-like protein 1 (tlp-1), and beta-1,3-glucanase; and (2) to test the resultant transgenic wheat lines against F. graminearum infection under greenhouse and field conditions. Using the wheat cultivar Bobwhite, we developed one, two, and four lines carrying the alpha-1-purothionin, tlp-1, and beta-1,3-glucanase transgenes, respectively, that had statistically significant reductions in FHB severity in greenhouse evaluations. We tested these seven transgenic lines under field conditions for percent FHB disease severity, deoxynivalenol (DON) mycotoxin accumulation, and percent visually scabby kernels (VSK). Six of the seven lines differed from the nontransgenic parental Bobwhite line for at least one of the disease traits. A beta-1,3-glucanase transgenic line had enhanced resistance, showing lower FHB severity, DON concentration, and percent VSK compared to Bobwhite. Taken together, the results showed that overexpression of defense response genes in wheat could enhance the FHB resistance in both greenhouse and field conditions.


Assuntos
Fusarium/crescimento & desenvolvimento , Doenças das Plantas/genética , Triticum/genética , Southern Blotting , Western Blotting , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética , Triticum/metabolismo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...