Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Comput Methods Eng ; 30(3): 1495-1552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36685137

RESUMO

Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the 'as designed' and 'as manufactured' state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature.

2.
Sci Rep ; 9(1): 2450, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30792423

RESUMO

Neutron Tomography (NT) is a non-destructive technique to investigate the inner structure of a wide range of objects and, in some cases, provides valuable results in comparison to the more common X-ray imaging techniques. However, NT is time consuming and scanning a set of similar objects during a beamtime leads to data redundancy and long acquisition times. Nowadays NT is unfeasible for quality checking study of large quantities of similar objects. One way to decrease the total scan time is to reduce the number of projections. Analytical reconstruction methods are very fast but under this condition generate streaking artifacts in the reconstructed images. Iterative algorithms generally provide better reconstruction for limited data problems, but at the expense of longer reconstruction time. In this study, we propose the recently introduced Neural Network Filtered Back-Projection (NN-FBP) method to optimize the time usage in NT experiments. Simulated and real neutron data were used to assess the performance of the NN-FBP method as a function of the number of projections. For the first time a machine learning based algorithm is applied and tested for NT image reconstruction problem. We demonstrate that the NN-FBP method can reliably reduce acquisition and reconstruction times and it outperforms conventional reconstruction methods used in NT, providing high image quality for limited datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...