Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 118(40): 9438-44, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25189271

RESUMO

We have investigated the effects of quantum tunneling on the photodissociation dynamics of ammonia, following below and above barrier photoexcitation of low-lying levels of the ν'(2) umbrella mode of the NH(3) à state (NH(3) (Ã)). This barrier separates the local minimum of the vertical Franck­Condon region from the NH(3) (Ã)/NH(3) (X̃) conical intersection (CI) which can be accessed along the N­H stretch coordinate. Two complementary techniques, time-resolved photoelectron spectroscopy (TR-PES) and time-resolved total kinetic energy release spectroscopy (TR-TKER), have been utilized to directly measure, for the first time, vibrational level dependent excited state lifetimes and N­H dissociation time scales as well as photoproduct final energy distributions. Interestingly, ν'(2) even/odd dependencies are observed in the measured time constants and NH(2) internal energy spectra, which are attributed to tunneling through a barrier, whose magnitude is dependent on the planarity of NH(3) in the à state and direct versus indirect dissociation at the NH(3) (Ã)/NH(3) (X̃) conical intersection.

2.
Phys Chem Chem Phys ; 14(30): 10401-9, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22499282

RESUMO

The ultrafast excited state relaxation of ammonia is investigated by resonantly exciting specific vibrational modes of the electronically excited NH(3) (Ã) state using three complementary femtosecond (fs) pump-probe techniques: time-resolved photoelectron, ion-yield and photofragment translational spectroscopy. Ammonia can be seen as a prototypical system for studying non-adiabatic dynamics and therefore offers a benchmark species for demonstrating the advantages of combining the aforementioned techniques to probe excited state dynamics, whilst simultaneously illuminating new aspects of ammonia's photochemistry. Time-resolved photoelectron spectroscopy (TRPES) provides direct spectroscopic evidence of σ* mediated relaxation of the NH(3) (Ã) state which manifests itself as coupling of the umbrella (ν(2)) and symmetric N-H stretch (ν(1)) modes in the photoelectron spectra. Time-resolved ion yield (TRIY) and time-resolved photofragment translation spectroscopy (TRPTS) grant a measure of the dissociation dynamics through analysis of the H and NH(2) photodissociation co-fragments. Initial vibrational level dependent TRIY measurements reveal photoproduct formation times of between 190 and 230 fs. Measurement of H-atom photoproduct kinetic energies enables investigation into the competition between adiabatic and non-adiabatic dissociation channels at the NH(3) (Ã)/NH(3) (X̃) conical intersection and has shown that upon non-adiabatic dissociation into NH(2) (X̃) + H, the NH(2) (X[combining tilde]) fragment is predominantly generated with significant fractions of internal vibrational energy.

3.
Phys Chem Chem Phys ; 14(18): 6266-72, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22370631

RESUMO

Imidazole acts as a subunit in the DNA base adenine and the amino acid histidine-both important biomolecules which display low fluorescence quantum yields following UV excitation. The low fluorescence quantum yields are attributed to competing non-radiative excited state relaxation pathways that operate on ultrafast timescales. Imidazole is investigated here as a model compound due to its accessibility to high level ab initio calculations and time-resolved gas-phase spectroscopic techniques. Recent non-adiabatic dynamics simulations have identified three non-radiative relaxation mechanisms which are active following 6.0-6.2 eV excitation. Presented herein is a comprehensive investigation of each mechanism using a combination of femtosecond time-resolved ion yield and total kinetic energy release spectroscopies to monitor the formation of associated photoproducts. Relaxation along the (1)πσ state constitutes the predominant deactivation pathway. Timescales for NH-dissociation are extracted and distinguished from alternative H-atom sources based on their kinetic energy distributions. Larger photoproducts are observed to a lesser extent and attributed to ring fragmentation following NH-puckering and CN-stretching relaxation paths.


Assuntos
Elétrons , Gases/química , Imidazóis/química , Fotólise , Cor , Cinética , Análise Espectral
4.
J Phys Chem A ; 116(11): 2600-9, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21806002

RESUMO

The role of ultraviolet photoresistance in many biomolecules (e.g., DNA bases and amino acids) has been extensively researched in recent years. This behavior has largely been attributed to the participation of dissociative (1)πσ* states localized along X-H (X ═ N, O) bonds, which facilitate an efficient means for rapid nonradiative relaxation back to the electronic ground state via conical intersections or ultrafast H-atom elimination. One such species known to exhibit this characteristic photochemistry is the UV chromophore imidazole, a subunit in the biomolecules adenine and histidine. However, the (1)πσ* driven photochemistry of its structural isomer pyrazole has received much less attention, both experimentally and theoretically. Here, we probe the ultrafast excited state dynamics occurring in pyrazole following photoexcitation at 200 nm (6.2 eV) using two experimental methodologies. The first uses time-resolved velocity map ion imaging to investigate the ultrafast H-atom elimination dynamics following direct excitation to the lowest energy (1)πσ* state (1(1)A" ← X(1)A'). These results yield a bimodal distribution of eliminated H-atoms, situated at low and high kinetic energies, the latter of which we attribute to (1)πσ* mediated N-H fission. The time constants extracted for the low and high energy features are ~120 and <50 fs, respectively. We also investigate the role of ring deformation relaxation pathways from the first optically bright (1)ππ* state (2(1)A' ← X(1)A'), by performing time-resolved ion yield measurements. These results are modeled using a (1)ππ* → ring deformation → photofragmentation mechanism (a model based on comparison with theoretical calculations on the structural isomer imidazole) and all photofragments possess appearance time constants of <160 fs. A comparison between time-resolved velocity map ion imaging and time-resolved ion yield measurements suggest that (1)πσ* driven N-H fission gives rise to the dominant kinetic photoproducts, re-enforcing the important role (1)πσ* states have in the excited state dynamics of biological chromophores and related aromatic heterocycles.


Assuntos
Processos Fotoquímicos , Prótons , Pirazóis/química , Adenina/química , DNA/química , Histidina/química , Imidazóis/química , Cinética , Termodinâmica , Raios Ultravioleta
5.
Chemphyschem ; 12(17): 3365-75, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21905196

RESUMO

The ultrafast dynamics of UV-excited imidazole in the gas phase is investigated by theoretical nonadiabatic dynamics simulations and experimental time-resolved photoelectron spectroscopy. The results show that different electronic excited-state relaxation mechanisms occur, depending on the pump wavelength. When imidazole is excited at 239.6 nm, deactivation through the NH-dissociation conical intersection is observed on the sub-50 fs timescale. After 200.8 nm excitation, competition between NH-dissociation and NH-puckering conical intersections is observed. The NH-dissociation to NH-puckering branching ratio is predicted to be 21:4, and the total relaxation time is elongated by a factor of eight. A procedure for simulation of photoelectron spectra based on dynamics results is developed and employed to assign different features in the experimental spectra.

6.
J Phys Chem A ; 114(42): 11225-30, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20961159

RESUMO

Electronic relaxation pathways in photoexcited nucleobases have received much theoretical and experimental attention due to their underlying importance to the UV photostability of these biomolecules. Multiple mechanisms with different energetic onsets have been proposed by ab initio calculations yet the majority of experiments to date have only probed the photophysics at a few selected excitation energies. We present femtosecond time-resolved photoelectron spectra (TRPES) of the DNA base adenine in a molecular beam at multiple excitation energies between 4.7-6.2 eV. The two-dimensional TRPES data is fit globally to extract lifetimes and decay associated spectra for unambiguous identification of states participating in the relaxation. Furthermore, the corresponding amplitude ratios are indicative of the relative importance of competing pathways. We adopt the following mechanism for the electronic relaxation of isolated adenine; initially the S(2)(ππ*) state is populated by all excitation wavelengths and decays quickly within 100 fs. For excitation energies below ∼5.2 eV, the S(2)(ππ*)→S(1)(nπ*)→S(0) pathway dominates the deactivation process. The S(1)(nπ*)→S(0) lifetime (1032-700 fs) displays a trend toward shorter time constants with increasing excitation energy. On the basis of relative amplitude ratios, an additional relaxation channel is identified at excitation energies above 5.2 eV.


Assuntos
Adenina/química , Elétrons , Raios Ultravioleta , Modelos Moleculares , Espectroscopia Fotoeletrônica , Teoria Quântica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...