Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(10): e202115747, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875130

RESUMO

The chemical reduction of π-conjugated bilayer nanographene 1 (C138 H120 ) with K and Rb in the presence of 18-crown-6 affords [K+ (18-crown-6)(THF)2 ][{K+ (18-crown-6)}2 (THF)0.5 ][C138 H122 3- ] (2) and [Rb+ (18-crown-6)2 ][{Rb+ (18-crown-6)}2 (C138 H122 3- )] (3). Whereas K+ cations are fully solvent-separated from the trianionic core thus affording a "naked" 1.3 - anion, Rb+ cations are coordinated to the negatively charged layers of 1.3 - . According to DFT calculations, the localization of the first two electrons in the helicene moiety leads to an unprecedented site-specific hydrogenation process at the carbon atoms located on the edge of the helicene backbone. This uncommon reduction-induced site-specific hydrogenation provokes dramatic changes in the (electronic) structure of 1 as the helicene backbone becomes more compressed and twisted upon chemical reduction, which results in a clear slippage of the bilayers.

2.
Acc Chem Res ; 52(6): 1565-1574, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31181912

RESUMO

Chirality is a fascinating property present in naturally occurring and artificial molecules and materials, observable as chiroptical behavior. The emerging area of carbon nanostructures has undergone tremendous development, with a wide variety of carbon nanoforms reported over the last two decades. However, despite interest in merging chirality and nanocarbons, this has been successfully achieved only in empty fullerenes, whereas in other kinds of fullerenes or carbon nanostructures such as carbon nanotubes, graphene, and graphene quantum dots (GQDs), to name the most popular systems, it is almost unknown. Therefore, controlling chirality in carbon nanostructures currently represents a major challenge for the chemical community. In this Account, we show our progress in the synthesis of chiral molecular carbon nanostructures, namely, metallofullerenes, endohedral fullerenes, GQDs, and curved molecular nanographenes, by using asymmetric catalysis and both top-down and bottom-up chemical approaches. Furthermore, we bring in a new family of lesser-known molecular chiral bilayer nanographenes, where chirality is introduced from the starting helicene moiety and a single enantiomer of the nanographene is synthesized. Some important landmarks in the development of chiral molecular carbon nanostructures shown in this Account are the application of synthesis-tailored, enantiomerically pure metallofullerenes as catalysts for hydrogen transfer reactions and the use of endohedral fullerenes to determine the effect of the incarcerated molecule in the carbon cage on the cis-trans stereoisomerization of optically active pendent moieties. Furthermore, the first top-down synthesis of chiral GQDs by functionalization with chiral alcohols is also presented. An emerging alternative to GQDs, when the desire for purity and atomistic control outweighs the cost of multistep synthesis, is the bottom-up approach, in which molecular nanographenes are formed in precise sizes and shapes and enantiomeric control is feasible. In this regard, a singular and amazing example is given by our synthesis of a single enantiomer of the first chiral bilayer nanographene, which formally represents a new family of molecular nanographenes with chirality controlled and maintained throughout their syntheses. The aforementioned synthetic chiral nanostructures represent groundbreaking nanocarbon systems where chirality is a further dimension of structural control, paving the way to a new scenario for carbon nanoforms in which chirality selection determines the properties of these novel carbon-based materials. Fine-tuning of such properties is envisioned to impact biomedical and materials science applications.

3.
J Am Chem Soc ; 140(49): 17188-17196, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30431273

RESUMO

A geometrically selective bottom-up synthesis of curved nanographenes is described. The synthetic methodology used involves the extension of the π-system of positively curved corannulene by a [4+2] cycloaddition reaction followed by cyclodehydrogenation (Scholl oxidation). By selecting the conditions for the Scholl oxidation, the formation of a seven-membered ring that also confers negative curvature to the resulting nanographene can be activated, offering two topologically distinct, curved nanographenes from a common precursor. Additionally, the structure-property relationship in these new nanographenes is explored via theoretical, electrochemical, photophysical, Raman, and X-ray crystallographic studies.

4.
Angew Chem Int Ed Engl ; 57(23): 6774-6779, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29447436

RESUMO

A rigid, inherently chiral bilayer nanographene has been synthesized as both the racemate and enantioenriched M isomer (with 93 % ee) in three steps from established helicenes. This folded nanographene is composed of two hexa-peri-hexabenzocoronene layers fused to a [10]helicene, with an interlayer distance of 3.6 Šas determined by X-ray crystallography. The rigidity of the helicene linker forces the layers to adopt a nearly aligned AA-stacked conformation, rarely observed in few-layer graphene. By combining the advantages of nanographenes and helicenes, we have constructed a bilayer system of 30 fused benzene rings that is also chiral, rigid, and remains soluble in common organic solvents. We present this as a molecular model system of bilayer graphene, with properties of interest in a variety of potential applications.

5.
Chemistry ; 23(65): 16593-16604, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28898486

RESUMO

Evidence for the surprising formation of polymeric phases under high pressure for conjugated nanohoop molecules was found. This paper represents one of the unique cases, in which the molecular-level effects of pressure in crystalline organic solids is addressed, and provides a general approach based on vibrational Raman spectroscopy combining experiments and computations. In particular, we studied the structural and supramolecular chemistry of the cyclic conjugated nanohoop molecule [5]cyclo-para-phenylene ([5]CPP) under high pressures up to 10 GPa experimentally and up to 20 GPa computationally. The theoretical modeling for periodic crystals predicts good agreements with the experimentally obtained Raman spectra in the molecular phase. In addition, we have discovered two stable polymeric phases that arise in the simulation. The critical pressures in the simulation are too high, but the formation of polymeric phases at high pressures provides a natural explanation for the observed irreversibility of the Raman spectra upon pressure release between 6 and 7 GPa. The geometric parameters show a deformation toward quinonoid structures at high pressures accompanied by other deformations of the [5]CPP nanohoops. The quinonoidization of the benzene rings is linked to the systematic change of the bond length alternation as a function of the pressure, providing a qualitative interpretation of the observed spectral shifts of the molecular phase.

6.
Nat Chem ; 6(5): 404-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24755591

RESUMO

Warped carbon-rich molecules have captured the imagination of scientists across many disciplines. Owing to their promising materials properties and challenging synthesis, strained hydrocarbons are attractive targets that push the limits of synthetic methods and molecular design. Herein we report the synthesis and characterization of [5]cycloparaphenylene ([5]CPP), a carbon nanohoop that can be envisaged as an open tubular fragment of C60, the equator of C70 fullerene and the unit cycle of a [5,5] armchair carbon nanotube. Given its calculated 119 kcal mol(-1) strain energy and severely distorted benzene rings, this synthesis, which employs a room-temperature macrocyclization of a diboronate precursor, single-electron reduction and elimination, is remarkably mild and high yielding (27% over three steps). Single-crystal X-ray diffraction data were obtained to confirm its geometry and previously disputed benzenoid character. First and second pseudoreversible oxidation and reduction events were observed via cyclic voltammetry. The ease of synthesis, high solubility and narrowest optical HOMO/LUMO gap of any para-polyphenylene synthesized make [5]CPP a desirable new material for organic electronics.


Assuntos
Técnicas de Química Sintética , Fulerenos/química , Nanotubos de Carbono/química , Temperatura , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta
7.
Top Curr Chem ; 349: 249-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23536242

RESUMO

Rigid hydrocarbon macrocycles with radially-oriented π-systems and continuous conjugation have attracted great interest in recent years. These molecular belts have novel optoelectronic properties and host-guest behavior. Certain belts may also ultimately lead to a rational synthesis of carbon nanotubes. The high strain associated with the nonplanar, conjugated backbones requires the development of new synthetic methods, and clever synthetic design. Herein we describe the synthetic history and properties of these structurally simple but synthetically challenging molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...