Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825095

RESUMO

As the proportion of prime carcasses originating from dairy herds increases, the focus is shifting to the beef merit of the progeny from dairy herds. Several dairy cow total merit indexes include a negative weight on measures of cow size. However, there is a lack of knowledge on the impact of genetic selection, solely for lighter or smaller-sized dairy cows, on the beef performance of their progeny. Therefore, the objective of this study was to quantify the genetic correlations among cow size traits (i.e., cow body weight (BW), cow carcass weight (CW)), cow body condition score (BCS), cow carcass conformation (CC), and cow carcass fat cover (CF), as well as the correlations between these cow traits and a series of beef performance slaughter-related traits (i.e., CW, CC, CF, and age at slaughter (AS)) in their progeny. After data editing, there were 52,950 cow BW and BCS records, along with 57,509 cow carcass traits (i.e., CW, CC, and CF); carcass records from 346,350 prime animals along with AS records from 316,073 prime animals were also used. Heritability estimates ranged from moderate to high (0.18 to 0.62) for all cow and prime animal traits. The same carcass trait in cows and prime animals were strongly genetically correlated with each other (0.76 to 0.85), implying that they are influenced by very similar genomic variants. Selecting exclusively for cows with higher BCS (i.e., fatter) will, on average, produce more conformed prime animals carcasses, owing to a moderate genetic correlation (0.30) between both traits. Genetic correlations revealed that selecting exclusively for lighter BW or CW cows will, on average, result in lighter prime animal carcasses of poor CC, while also delaying slaughter age. Nonetheless, selective breeding through total merit indexes should be successful in breeding for smaller dairy cows, and desirable prime animal carcass traits concurrently, because of the non-unity genetic correlations between the cow and prime animal traits; this will help to achieve a more ethical, environmentally sustainable, and economically viable dairy-beef industry.

2.
Proc Biol Sci ; 290(2001): 20230584, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339745

RESUMO

Temporal patterns in spawning and juvenile recruitment can have major effects on population size and the demographic structure of coral reef fishes. For harvested species, these patterns are crucial in determining stock size and optimizing management strategies such as seasonal closures. For the commercially important coral grouper (Plectropomus spp.) on the Great Barrier Reef, histological studies indicate peak spawning around the summer new moons. Here we examine the timing of spawning activity for P. maculatus in the southern Great Barrier Reef by deriving age in days for 761 juvenile fish collected between 2007 and 2022, and back-calculating settlement and spawning dates. Age-length relationships were used to estimate spawning and settlement times for a further 1002 juveniles collected over this period. Unexpectedly, our findings indicate year-round spawning activity generates distinct recruitment cohorts that span several weeks to months. Peak spawning varied between years with no clear association with environmental cues, and little to no alignment with existing seasonal fisheries closures around the new moon. Given the variability and uncertainty in peak spawning times, this fishery may benefit from additional and longer seasonal closures, or alternative fisheries management strategies, to maximize the recruitment contribution from periods of greatest reproductive success.


Assuntos
Antozoários , Bass , Animais , Estações do Ano , Peixes , Recifes de Corais , Pesqueiros , Envelhecimento
3.
JDS Commun ; 3(1): 32-37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36340681

RESUMO

Attention is increasing on both cow size and body weight (BW) as energy sinks and thus as contributors to differences in production efficiency among cows. What is not currently clear, however, is how cow BW affects the increase in yield per cow per unit increase in genetic merit for milk production. This void in knowledge was filled in the present study using BW data from 20,470 lactations on 16,980 Holstein-Friesian dairy cows stratified into 4 groups on BW adjusted for differences in parity, days in milk, and body condition score. Using linear mixed models that adjusted for nuisance factors, cow phenotypic milk production variables were regressed on estimates of parental average genetic merit for the respective trait within each stratum of BW defined within contemporary group; estimates of genetic merit were from the national genetic evaluations. Both the intercept and linear regression coefficients on genetic merit were compared across BW strata. The intercepts representing the mean phenotypic yield at a genetic merit of zero differed among BW strata; irrespective of yield trait, the least squares means yield per BW stratum increased numerically as cows got heavier, although not every stepwise increase in BW stratum was associated with significantly greater yield compared with the previous (lighter) stratum. Nonetheless, the yield of the cows in the lightest of the 4 strata was always less than that of the heaviest 2 strata; relative to the lightest stratum, cows in the heaviest BW stratum produced only 3 to 4% more yield. Furthermore, the association between phenotypic yield and its respective measures of genetic merit differed by BW stratum; the response to selection for each of the yield traits was 15 to 23% greater for the heaviest stratum of cows compared with their contemporaries in the lightest stratum. Although BW stratum was associated with mean fat and protein concentration after adjusting for differences in genetic merit for fat and protein concentration, the association did not differ by BW stratum for either fat or protein concentration. The effect of BW on efficiency should consider the association between BW and not only mean phenotypic yield at a given genetic merit, but also how the differences in yield diverge as genetic merit increases.

4.
JDS Commun ; 3(5): 377, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36342892

RESUMO

[This corrects the article DOI: 10.3168/jdsc.2021-0115.].

5.
J Dairy Sci ; 104(7): 8076-8093, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896640

RESUMO

Various studies have validated that genetic divergence in dairy cattle translates to phenotypic differences; nonetheless, many studies that consider the breeding goal, or associated traits, have generally been small scale, often undertaken in controlled environments, and they lack consideration for the entire suite of traits included in the breeding goal. Therefore, the objective of the present study was to fill this void, and in doing so, provide producers with confidence that the estimated breeding values (EBV) included in the breeding goal do (or otherwise) translate to desired changes in performance among commercial cattle; an additional outcome of such an approach is the identification of potential areas for improvements. Performance data on 536,923 Irish dairy cows (and their progeny) from 13,399 commercial spring-calving herds were used. Association analyses between the cow's EBV of each trait included in the Irish total merit index for dairy cows (which was derived before her own performance data accumulated) and her subsequent performance were undertaken using linear mixed models; milk production, fertility, calving, maintenance (i.e., liveweight), beef, health, and management traits were all considered in the analyses. Results confirm that excelling in EBV for individual traits, as well as on the total merit index, generally delivers superior phenotypic performance; examples of the improved performance for genetically elite animals include a greater yield and concentration of both milk fat and milk protein, despite a lower milk volume, superior reproductive performance, better survival, improved udder and hoof health, lighter cows, and fewer calving complications; all these gains were achieved with minimal to no effect on the beef merit of the dairy cow's progeny. The associated phenotypic change in each performance trait per unit change in its respective EBV was largely in line with the direction and magnitude of expectation, the exception being for calving interval. Per unit change in calving interval EBV, the direction of phenotypic response was as anticipated but the magnitude of the response was only half of what was expected. Despite the deviation from expectation between the calving interval EBV and its associated phenotype, a superior total merit index or a superior fertility EBV was indeed associated with an improvement in all detailed fertility performance phenotypes investigated. Results substantiate that breeding is a sustainable strategy of improving phenotypic performance in commercial dairy cattle and, by extension, profit.


Assuntos
Fertilidade , Leite , Animais , Bovinos/genética , Estudos Transversais , Feminino , Lactação , Fenótipo , Reprodução
6.
Nature ; 591(7851): 599-603, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762765

RESUMO

Terrestrial ecosystems remove about 30 per cent of the carbon dioxide (CO2) emitted by human activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). Although plant biomass often increases in elevated CO2 (eCO2) experiments4-6, SOC has been observed to increase, remain unchanged or even decline7. The mechanisms that drive this variation across experiments remain poorly understood, creating uncertainty in climate projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient acquisition, in which plants increase their biomass by mining the soil for nutrients, which decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands (8 ± 2 per cent) but not in forests (0 ± 2 per cent), even though plant biomass in grasslands increase less (9 ± 3 per cent) than in forests (23 ± 2 per cent). Ecosystem models do not reproduce this trade-off, which implies that projections of SOC may need to be revised.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Plantas/metabolismo , Solo/química , Biomassa , Pradaria , Modelos Biológicos
7.
J Dairy Sci ; 104(6): 6885-6896, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773797

RESUMO

Accurate estimates of genetic merit for both live weight and body condition score (BCS) could be useful additions to both national- and herd-breeding programs. Although recording live weight and BCS is not technologically arduous, data available for use in routine genetic evaluations are generally lacking. The objective of the present study was to explore the usefulness of routinely recorded data, namely linear type traits (which also included BCS but only assessed visually) and carcass traits in the pursuit of genetic evaluations for both live weight and BCS in dairy cows. The data consisted of on-farm records of live weight and BCS (assessed using both visual and tactile cues) from 33,242 dairy cows in 201 commercial Irish herds. These data were complemented with information on 6 body-related linear type traits (i.e., stature, angularity, chest width, body depth, BCS, and rump width) and 3 cull cow carcass measures (i.e., carcass weight, conformation, and fat cover) on a selection of these animals plus close relatives. (Co)variance components were estimated using animal linear mixed models. The genetic correlation between the type traits stature, angularity, body depth, chest width, rump width, and visually-assessed BCS with live weight was 0.68, -0.28, 0.43, 0.64, 0.61, and 0.44, respectively. The genetic correlation between angularity and BCS measured on farm (based on both visual and tactile appraisal) was -0.79; the genetic and phenotypic correlation between BCS assessed visually as part of the linear assessment with BCS assessed by producers using both tactile and visual cues was 0.90 and 0.27, respectively. The genetic (phenotypic) correlation between cull cow carcass weight and live weight was 0.81 (0.21), and the genetic (phenotypic) correlation between cull cow carcass fat cover and BCS assessed on live cows was 0.44 (0.12). Estimated breeding values (EBV) for live weight and BCS in a validation population of cows were generated using a multitrait evaluation with observations for just the type traits, just the carcass traits, and both the type traits and carcass traits; the EBV were compared with the respective live weight and BCS phenotypic observations. The regression of phenotypic live weight on its EBV from the multitrait evaluations was 1.00 (i.e., the expectation) when the EBV was generated using just linear type trait data, but less than 1 (0.83) when using just carcass data. However, the regression changed across parities and stages of lactation. The partial correlation (after adjusting for contemporary group, parity by stage of lactation, heterosis, and recombination loss) between phenotypic live weight and EBV for live weight estimated using the 3 different scenarios (i.e., type only, carcass only, type plus carcass) ranged from 0.38 to 0.43. Although the prediction of phenotypic BCS from its respective EBV was relatively good when using just the linear type trait data (regression coefficient of 0.83 with a partial correlation of 0.22), the predictive ability of BCS EBV based on just carcass data was poor and should not be used. Overall, linear type trait data are a useful source of information to predict live weight and BCS with minimal additional predictive value from also including carcass data. Nonetheless, in the absence of linear type trait data, information on carcass traits can be useful in predicting genetic merit for mature cow live weight. Prediction of cow BCS from cow carcass data is not recommended.


Assuntos
Lactação , Animais , Bovinos/genética , Fazendas , Feminino , Modelos Lineares , Paridade , Fenótipo , Gravidez
8.
Anim Genet ; 52(2): 208-213, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33527466

RESUMO

Proper quality control of data prior to downstream analyses is fundamental to ensure integrity of results; quality control of genomic data is no exception. While many metrics of quality control of genomic data exist, the objective of the present study was to quantify the genotype and allele concordance rate between called single nucleotide polymorphism (SNP) genotypes differing in GenCall (GC) score; the GC score is a confidence measure assigned to each Illumina genotype call. This objective was achieved using Illumina beadchip genotype data from 771 cattle (12 428 767 genotypes in total post-editing) and 80 sheep (1 557 360 SNPs genotypes in total post-editing) each genotyped in duplicate. The called genotype with the lowest associated GC score was compared to the genotype called for the same SNP in the same duplicated animal sample but with a GC score of >0.90 (assumed to represent the true genotype). The mean genotype concordance rate for a GC score of <0.300, 0.300-0.549, and ≥0.550 in the cattle (sheep in parenthesis) was 0.9467 (0.9864), 0.9707 (0.9953), and 0.9994 (0.99997) respectively; the respective allele concordance rate was 0.9730 (0.9930), 0.9849 (0.9976), and 0.9997 (0.99998). Hence, concordance eroded as the GC score of the called genotype reduced, albeit the impact was not dramatic and was not very noticeable until a GC score of <0.55. Moreover, the impact was greater and more consistent in the cattle population than in the sheep population. Furthermore, an impact of GC score on genotype concordance rate existed even for the same SNP GenTrain value; the GenTrain value is a statistical score that depicts the shape of the genotype clusters and the relative distance between the called genotype clusters.


Assuntos
Bovinos/genética , Genótipo , Ovinos/genética , Alelos , Animais , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Polimorfismo de Nucleotídeo Único
9.
Animal ; 15(2): 100077, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33573978

RESUMO

While breeding indexes exist globally to identify candidate parents of the next generation, fewer tools exist that provide guidance on the expected monetary value of young animals. The objective of the present study was therefore to develop the framework for a cattle decision-support tool which incorporates both the genetic and non-genetic information of an animal and, in doing so, better predict the potential market value of an animal, whatever the age. Two novel monetary indexes were constructed and their predictive ability of carcass value was compared to that of the Irish national Terminal breeding index, typical of other terminal indexes used globally. A constructed Harvest index was composed of three carcass-related traits [i.e., 1) carcass weight, 2) carcass conformation and 3) carcass fat, each weighted by their respective economic value] and aimed at purchasers of animals close to harvest; the second index, termed the Calf index, also included docility and feed intake (weighted by their respective economic value), thus targeting purchasers of younger calves for growing (and eventually harvesting). Genetic and non-genetic fixed and random effect model solutions from the Irish national genetic evaluations underpinned all indexes. The two novel indexes were formulated using three alternative estimates of an animal's total merit for comparative purposes: 1) an index based solely on the animal's breed solutions, 2) an index which also included within-breed animal differences, and 3) an index which, as well as considering additive and non-additive genetic effects, also included non-genetic effects (referred to as production values [PVs]). As more information (i.e., within breed effects and subsequently non-genetic effects) was included in the total merit estimate, the correlations strengthened between the two proposed indexes and the animal's calculated carcass market value; the correlation coefficients almost doubled in strength when total merit was based on PV-based estimates as compared to the breed solutions alone. Including phenotypic live-weight data, collected during the animal's life, strengthened the predictive ability of the indexes further. Based on the results presented, the proposed indexes may fill the void in decision support when purchasing or selling cattle. In addition, given the dynamic nature of indexes, they have the potential to be updated in real-time as information becomes available.


Assuntos
Comportamento do Consumidor , Ingestão de Alimentos , Animais , Bovinos/genética , Fenótipo
10.
JDS Commun ; 2(5): 257-261, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36338390

RESUMO

The growing awareness and scrutiny of the management of young dairy calves, especially male calves, necessitates a support tool to aid in the planning of resource allocation on dairy farms. There is a desire among some vendors for a minimum calf weight when purchasing young dairy bull calves. Hence, the objective of the present study was to investigate whether live weight of young calves (approximately 10-50 d old) can be predicted using readily accessible animal-level features, especially features that may be available in advance of birth. A multiple linear regression mixed model was developed with the live weight of 602 dairy bull calves aged between 10 and 42 d as the dependent variable; the age at which an animal is predicted to reach a predefined live weight was then estimated based on the model regression coefficients. Fixed effects included in the multiple regression model were dam parity, gestation length, and parental average genetic merit for relevant traits available in Ireland; namely, birth weight, birth size, and carcass weight. Herd of origin was included as a random effect, with all calves having been sold directly from the farm of birth. Live weight data were recorded at the point of sale when calves were, on average, 26 d old with a mean live weight of 56.6 kg. Animals were randomly assigned to 10 separate (i.e., folds) cross-validation data sets without replacement (i.e., each fold consisted of a different 10% of the data to test the model, with the remaining 90% of data being used to train the model) to quantify the accuracy of prediction. Across all data, the correlation between actual and predicted live weight was 0.76; the regression coefficient of actual live weight on predicted live weight across all data was 0.99. The root mean squared error of prediction varied from 4.40 to 6.66 kg per fold. Across all data, the root mean squared error was 5.61 kg, implying that 68% of live weight predictions were within 5.61 kg of the actual live weight. Given the potential availability of all model features in advance of birth (gestation length can be predicted from ultrasound examination of the pregnant uterus, although substituting parental average genetic merit for gestation length had minimal effect on model performance), predictions can be integrated into a dairy farm decision support tool to aid in the management of labor and infrastructure resources to achieve minimum live weight specifications before sale.

11.
Meat Sci ; 173: 108401, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33310548

RESUMO

The objective of the present study was to estimate genetic parameters for four organoleptic traits in beef meat, namely tenderness, juiciness, flavour and chewiness using data from 5380 young crossbred progeny of 748 different sires. As well as using the mean animal sensory score across all panellists for a given trait, other aggregate functions such as the median and modal values were also investigated. The heritability (SE) of mean tenderness, juiciness, flavour and chewiness was 0.16 (0.04), 0.14 (0.04), 0.11 (0.03) and 0.21 (0.06), respectively; heritability estimates for the other aggregate values of these traits were generally lower. All genetic correlations between tenderness, juiciness and flavour were positive (0.52 to 0.68) while the genetic correlations between these three traits with chewiness were all negative varying from -0.95 to -0.48. Weak genetic correlations (≤|0.16|) were evident between the sensory traits and all of carcass weight, conformation and subcutaneous fat cover.


Assuntos
Bovinos/genética , Carne Vermelha/análise , Animais , Cruzamento , Feminino , Masculino , Músculo Esquelético , Característica Quantitativa Herdável , Carne Vermelha/normas
12.
Sci Total Environ ; 763: 143052, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33189383

RESUMO

Seagrasses are important habitats providing many ecological services. Most species have broad distributions with maximum dispersal distances of 100's of kms, however there is limited understanding of dispersal distances of colonising species like Halodule uninervis. It commonly grows in disturbed environments and could disperse to other meadows via clonal fragments. Effective conservation management requires greater understanding of genetic structure, dispersal barriers, and connectivity timescales to predict recovery following disturbance. Despite fragment viability of up to 28 days in a congenera, this theory remains untested in situ. Using 80 neutral single nucleotide polymorphisms, we investigated genetic diversity, gene flow patterns and structure among 15 populations of H. uninervis along 2000 km of Western Australian coastline. These data were combined with a multi-generational oceanographic dispersal model and a barrier dispersal analysis to identify dispersal barriers and determine which fragment dispersal duration (FDD) and timescale over which stepping-stone connectivity occurred, best matched the observed genetic structure. The 2-7 day FDD best matched the genetic structure with 4-12 clusters, with barriers to dispersal that persisted for up to 100 years. Modelling suggested greater fragmentation of metapopulations towards the southern edge of the species distribution, but genetic diversity did not decline. Several long-term boundaries were identified even with fragment viability of up to 28 days. This suggests H. uninervis dispersal is spatially limited by factors like oceanographic features and habitat continuity which may limit dispersal of this species. This study reiterates that potential dispersal does not equal realised dispersal, and management scales of 10's of kilometers are required to maintain existing meadows. Recruitment from distances further than this scale are unlikely to aid recovery after extreme disturbance events, particularly towards the range edge of H. uninervis distribution.


Assuntos
Alismatales , Fluxo Gênico , Austrália , Ecossistema , Variação Genética
13.
J Dairy Sci ; 103(2): 1701-1710, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785871

RESUMO

Understanding the preferences of dairy cattle producers when selecting beef bulls for mating can help inform beef breeding programs as well as provide default parameters in mating advice systems. The objective of the present study was to characterize the genetic merit of beef artificial insemination (AI) bulls used in dairy herds, with particular reference to traits associated with both calving performance and carcass merit. The characteristics of the beef AI bulls used were compared with those of the dairy AI bulls used on the same farms. A total of 2,733,524 AI records from 928,437 females in 5,967 Irish dairy herds were used. Sire predicted transmitting ability (PTA) values and associated reliability values for calving performance and carcass traits based on national genetic evaluations from prior to the insemination were used. Fixed effects models were used to relate both genetic merit and the associated reliability of the dairy and beef bulls used on the farm with herd size, the extent of Holstein-Friesian × Jersey crossbreeding adopted by the herd, whether the herd used a technician insemination service or do-it-yourself, and the parity of the female mated. The mean direct calving difficulty PTA of the beef bulls used was 1.85 units higher than that of the dairy bulls but with over 3 times greater variability in the beef bulls. This 1.85 units equates biologically to an expectation of 1.85 more dystocia events per 100 dairy cows mated in the beef × dairy matings. The mean calving difficulty PTA of the dairy AI bulls used reduced with increasing herd size, whereas the mean calving difficulty PTA of the beef AI bulls used increased as herd size increased from 75 cows or fewer to 155 cows; the largest herds (>155 cows) used notably easier-calving beef bulls, albeit the calving difficulty PTA of the beef bulls was 3.33 units versus 1.67 units for the dairy bulls used in these herds. Although we found a general tendency for larger herds to use dairy AI bulls with lower reliability, this trend was not obvious in the beef AI bulls used. Irrespective of whether dairy or beef AI bulls were considered, herds that operated more extensive Holstein-Friesian × Jersey crossbreeding (i.e., more than 50% crossbred cows) used, on average, easier calving, shorter gestation-length bulls with lighter expected progeny carcasses of poorer conformation. Mean calving difficulty PTA of dairy bulls used increased from 1.39 in heifers to 1.79 in first-parity cows and to 1.82 in second-parity cows, remaining relatively constant thereafter. In contrast, the mean calving difficulty PTA of the beef bulls used increased consistently with cow parity. Results from the present study demonstrate a clear difference in the mean acceptable genetic merit of beef AI bulls relative to dairy AI bulls but also indicates that these acceptable limits vary by herd characteristics.


Assuntos
Cruzamento , Bovinos , Inseminação Artificial/veterinária , Animais , Feminino , Masculino , Paridade , Fenótipo , Gravidez , Reprodutibilidade dos Testes , Reprodução
14.
J Dairy Sci ; 102(11): 10056-10072, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31495621

RESUMO

The desire to increase profit on dairy farms necessitates consideration of the revenue attainable from the sale of surplus calves for meat production. However, the generation of calves that are expected to excel in efficiency of growth and carcass merit must not be achieved to the detriment of the dairy female and her ability to calve and re-establish pregnancy early postcalving without any compromise in milk production. Given the relatively high heritability of many traits associated with calving performance and carcass merit, and the tendency for many of these traits to be moderately to strongly antagonistic, a breeding index that encompasses both calving performance and meat production could be a useful tool to fill the void in supporting decisions on bull selection. The objective of the present study was to derive a dairy-beef index (DBI) framework to rank beef bulls for use on dairy females with the aim of striking a balance between the efficiency of valuable meat growth in the calf and the subsequent performance of the dam. Traits considered for inclusion in this DBI were (1) direct calving difficulty; (2) direct gestation length; (3) calf mortality; (4) feed intake; (5) carcass merit reflected by carcass weight, conformation, and fat and the ability to achieve minimum standards for each; (6) docility; and (7) whether the calf was polled. Each trait was weighted by its respective economic weight, most of which were derived from the analyses of available phenotypic data, supplemented with some assumptions on costs and prices. The genetic merit for a range of performance metrics of 3,835 artificial insemination beef bulls from 14 breeds ranked on this proposed DBI was compared with an index comprising only direct calving difficulty and gestation length (the 2 generally most important characteristics of dairy farmers when selecting beef bulls). Within the Angus breed (i.e., the beef breed most commonly used on dairy females), the correlation between the DBI and the index of genetic merit for direct calving difficulty plus gestation length was 0.74; the mean of the within-breed correlations across all other breeds was 0.87. The ranking of breeds changed considerably when ranked based on the top 20 artificial insemination bulls excelling in the DBI versus excelling in the index of calving difficulty and gestation length. Dairy breeds ranked highest on the index of calving difficulty and gestation length, whereas the Holstein and Friesian breeds were intermediate on the DBI; the Jersey breed was one of the poorest breeds on DBI, superior only to the Charolais breed. The results clearly demonstrate that superior carcass and growth performance can be achieved with the appropriate selection of beef bulls for use on dairy females with only a very modest increase in collateral effect on cow performance (i.e., 2-3% greater dystocia expected and a 6-d-longer gestation length).


Assuntos
Bovinos/fisiologia , Leite/metabolismo , Carne Vermelha/economia , Animais , Cruzamento/economia , Bovinos/genética , Bovinos/crescimento & desenvolvimento , Comércio , Indústria de Laticínios/economia , Feminino , Inseminação Artificial/veterinária , Masculino , Fenótipo , Gravidez
15.
BMC Genomics ; 20(1): 720, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533623

RESUMO

BACKGROUND: The high narrow sense heritability of carcass traits suggests that the underlying additive genetic potential of an individual should be strongly correlated with both animal carcass quality and quantity, and therefore, by extension, carcass value. Therefore, the objective of the present study was to detect genomic regions associated with three carcass traits, namely carcass weight, conformation and fat cover, using imputed whole genome sequence in 28,470 dairy and beef sires from six breeds with a total of 2,199,926 phenotyped progeny. RESULTS: Major genes previously associated with carcass performance were identified, as well as several putative novel candidate genes that likely operate both within and across breeds. The role of MSTN in carcass performance was re-affirmed with the segregating Q204X mutation explaining 1.21, 1.11 and 5.95% of the genetic variance in carcass weight, fat and conformation, respectively in the Charolais population. In addition, a genomic region on BTA6 encompassing the NCAPG/LCORL locus, which is a known candidate locus associated with body size, was associated with carcass weight in Angus, Charolais and Limousin. Novel candidate genes identified included ZFAT in Angus, and SLC40A1 and the olfactory gene cluster on BTA15 in Charolais. Although the majority of associations were breed specific, associations that operated across breeds included SORCS1 on BTA26, MCTP2 on BTA21 and ARL15 on BTA20; these are of particular interest due to their potential informativeness in across-breed genomic evaluations. Genomic regions affecting all three carcass traits were identified in each of the breeds, although these were mainly concentrated on BTA2 and BTA6, surrounding MSTN and NCAPG/LCORL, respectively. This suggests that although major genes may be associated with all three carcass traits, the majority of genes containing significant variants (unadjusted p-value < 10- 4) may be trait specific associations of small effect. CONCLUSIONS: Although plausible novel candidate genes were identified, the proportion of variance explained by these candidates was minimal thus reaffirming that while carcass performance may be affected by major genes in the form of MSTN and NCAPG/LCORL, the majority of variance is attributed to the additive (and possibly multiplicative) effect of many polymorphisms of small effect.


Assuntos
Bovinos/genética , Fenótipo , Sequenciamento Completo do Genoma , Tecido Adiposo/metabolismo , Animais , Peso Corporal/genética , Bovinos/crescimento & desenvolvimento , Indústria de Laticínios , Genótipo , Carne/análise , Polimorfismo de Nucleotídeo Único
16.
PLoS One ; 14(2): e0212067, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763354

RESUMO

Bovine tuberculosis (bTB) is an infectious disease of cattle generally caused by Mycobacterium bovis, a bacterium that can elicit disease humans. Since the 1950s, the objective of the national bTB eradication program in Republic of Ireland was the biological extinction of bTB; that purpose has yet to be achieved. Objectives of the present study were to develop the statistical methodology and variance components to undertake routine genetic evaluations for resistance to bTB; also of interest was the detection of regions of the bovine genome putatively associated with bTB infection in dairy and beef breeds. The novelty of the present study, in terms of research on bTB infection, was the use of beef breeds in the genome-wide association and the utilization of imputed whole genome sequence data. Phenotypic bTB data on 781,270 animals together with imputed whole genome sequence data on 7,346 of these animals' sires were available. Linear mixed models were used to quantify variance components for bTB and EBVs were validated. Within-breed and multi-breed genome-wide associations were undertaken using a single-SNP regression approach. The estimated genetic standard deviation (0.09), heritability (0.12), and repeatability (0.30) substantiate that genetic selection help to eradicate bTB. The multi-breed genome-wide association analysis identified 38 SNPs and 64 QTL regions associated with bTB infection; two QTL regions (both on BTA23) identified in the multi-breed analysis overlapped with the within-breed analyses of Charolais, Limousin, and Holstein-Friesian. Results from the association analysis, coupled with previous studies, suggest bTB is controlled by an infinitely large number of loci, each having a small effect. The methodology and results from the present study will be used to develop national genetic evaluations for bTB in the Republic of Ireland. In addition, results can also be used to help uncover the biological architecture underlying resistance to bTB infection in cattle.


Assuntos
Estudo de Associação Genômica Ampla , Tuberculose Bovina/genética , Sequenciamento Completo do Genoma , Análise de Variância , Animais , Bovinos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
J Dairy Sci ; 101(12): 11052-11060, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30268620

RESUMO

Comparison of alternative dairy (cross-)breeding programs requires full appraisals of all revenues and costs, including beef merit. Few studies exist on carcass characteristics of crossbred dairy progeny originating from dairy herds as well as their dams. The objective of the present study was to quantify, using a national database, the carcass characteristics of young animals and cows differing in their fraction of Jersey. The data set consisted of 117,593 young animals and 42,799 cows. The associations between a combination of sire and dam breed proportion (just animal breed proportion when the dependent variable was on cows) with age at slaughter (just for young animals), carcass weight, conformation, fat score, price per kilogram, and total carcass value were estimated using mixed models that accounted for covariances among herdmates of the same sex slaughtered in close proximity in time; we also accounted for age at slaughter in young animals (which was substituted with carcass weight and carcass fat score when the dependent variable was age at slaughter), animal sex, parity of the cow or dam (where relevant), and temporal effects represented by a year-by-month 2-way interaction. For young animals, the heaviest of the dairy carcasses were from the mating of a Holstein-Friesian dam and a Holstein-Friesian sire (323.34 kg), whereas the lightest carcasses were from the mating of a purebred Jersey dam to a purebred Jersey sire which were 46.31 kg lighter (standard error of the difference = 1.21 kg). The young animal carcass weight of an F1 Holstein-Friesian × Jersey cross was 20.4 to 27.0 kg less than that of a purebred Holstein-Friesian animal. The carcass conformation of a Holstein-Friesian young animal was 26% superior to that of a purebred Jersey, translating to a difference of 0.78 conformation units on a scale of 1 to 15. Purebred Holstein-Friesians produced carcasses with less fat than their purebred Jersey counterparts. The difference in carcass price per kilogram among the alternative sire-dam breed combinations investigated was minimal, although large differences existed among the different breed types for overall carcass value; the carcass value of a Holstein-Friesian animal was 20% greater than that of a Jersey animal. Purebred Jersey animals required, on average, 21 d longer to reach a given carcass weight and fat score relative to a purebred Holstein-Friesian. The difference in age at slaughter between a purebred Holstein-Friesian animal and the mating between a Holstein-Friesian sire with a Jersey dam, and vice versa, was between 7.0 and 8.9 d. A 75.8-kg difference in carcass weight existed between the carcass of a purebred Jersey cow and that of a Holstein-Friesian cow; a 50% Holstein-Friesian-50% Jersey cow had a carcass 42.0 kg lighter than that of a purebred Holstein-Friesian cow. Carcass conformation was superior in purebred Holstein-Friesian compared with purebred Jersey cows. Results from this study represent useful input parameters to populate simulation models of alternative breeding programs on dairy farms, and to help beef farmers evaluate the cost-benefit of rearing, for slaughter, animals differing in Jersey fraction.


Assuntos
Bovinos/genética , Carne/análise , Criação de Animais Domésticos/economia , Animais , Cruzamento/economia , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Comércio , Custos e Análise de Custo , Feminino , Masculino , Carne/economia , Paridade , Linhagem , Gravidez , Reprodução
18.
J Anim Sci ; 95(11): 4728-4737, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293736

RESUMO

An equivalent computational approach called ssGTBLUP was formulated for the original single-step GBLUP (ssGBLUP). In ssGTBLUP, the genomic relationship matrix has the form = ' + , where the (centered and scaled) marker matrix has size x (numbers of genotypes and markers), and the matrix can be easily inverted. The inverse can be written as = - ' where is an by matrix. When the preconditioned conjugate gradient (PCG) method is used to solve the mixed model equations, a matrix vector product needs to be computed. In ssGBLUP, this requires multiplications, but in ssGTBLUP, the product ' has 2 multiplications and has multiplications with the constant independent of or . In an approximate approach called ssGTBLUP(p), the eigendecomposition of ' is used to reduce the number of rows in the matrix. Here, p is the percentage of total variance explained by the accepted eigenvalues. The objective of this study was to compare the performance of ssGBLUP, ssGTBLUP, ssGTBLUP(p), and the APY (algorithm for proven and young) method. In APY, the core had 50,000 (APY50K), 30,000 (APY30K), or 10,000 (APY10K) animals. The approaches were tested on the Irish beef carcass conformation genetic evaluation which has a heterogeneous multibreed population. The pedigree had 13.3 million animals. There were = 54,620 markers available from = 163,277 genotyped animals. For genotyped animals, the correlations of breeding values between ssGBLUP and ssGTBLUP(p) for the 11 traits in the model ranged from 0.999-1.000 for p = 99, 0.998-1.000 for p = 98, and 0.992-0.998 for p = 95 but were 0.994-1.000 for APY50K, 0.969-0.997 for APY30K, and 0.899-0.967 for APY10K. Computing times per iteration were 4.43, 3.30, 2.69, 2.29, 1.55, 1.76, 1.27, and 0.55 min for ssGBLUP, ssGTBLUP, ssGTBLUP(99), ssGTBLUP(98), ssGTBLUP(95), APY50K, APY30K, and APY10K, respectively. The ssGTBLUP(p) approach allowed a well-defined approximation to ssGBLUP and fast computations.


Assuntos
Algoritmos , Bovinos/genética , Genoma/genética , Genômica , Animais , Cruzamento , Bovinos/fisiologia , Feminino , Genótipo , Masculino , Modelos Genéticos , Linhagem , Fenótipo
19.
J Anim Sci ; 94(4): 1354-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27135995

RESUMO

Livestock mature at different rates depending, in part, on their genetic merit; therefore, the optimal age at slaughter for progeny of certain sires may differ. The objective of the present study was to examine sire-level genetic profiles for carcass weight, carcass conformation, and carcass fat in cattle of multiple beef and dairy breeds, including crossbreeds. Slaughter records from 126,214 heifers and 124,641 steers aged between 360 and 1,200 d and from 86,089 young bulls aged between 360 and 720 d were used in the analysis; animals were from 15,127 sires. Variance components for each trait across age at slaughter were generated using sire random regression models that included quadratic polynomials for fixed and random effects; heterogeneous residual variances were assumed across ages. Heritability estimates across genders ranged from 0.08 (±0.02) to 0.34 (±0.02) for carcass weight, from 0.24 (±0.02) to 0.42 (±0.01) for conformation, and from 0.16 (±0.03) to 0.40 (±0.02) for fat score. Genetic correlations within each trait across ages weakened as the interval between ages compared lengthened but were all >0.64, suggesting a similar genetic background for each trait across different ages. Eigenvalues and eigenfunctions of the additive genetic covariance matrix revealed genetic variability among animals in their growth profiles for carcass traits, although most of the genetic variability was associated with the height of the growth profile. At the same age, a positive genetic correlation (0.60 to 0.78; SE ranged from 0.01 to 0.04) existed between carcass weight and conformation, whereas negative genetic correlations existed between fatness and both conformation (-0.46 to 0.08; SE ranged from 0.02 to 0.09) and carcass weight (-0.48 to -0.16; SE ranged from 0.02 to 0.14) at the same age. The estimated genetic parameters in the present study indicate genetic variability in the growth trajectory in cattle, which can be exploited through breeding programs and used in decision support tools.


Assuntos
Composição Corporal/genética , Bovinos/genética , Modelos Genéticos , Animais , Peso Corporal/genética , Bovinos/fisiologia , Feminino , Testes Genéticos , Hibridização Genética , Masculino , Fenótipo
20.
J Dairy Sci ; 99(7): 5681-5689, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27132092

RESUMO

There is renewed interest in dairy cow crossbreeding in Ireland as a means to further augment productivity and profitability. The objective of the present study was to compare milk production and fertility performance for Holstein, Friesian, and Jersey purebred cows, and their respective crosses in 40 Irish spring-calving commercial dairy herds from the years 2008 to 2012. Data on 24,279 lactations from 11,808 cows were available. The relationship between breed proportion, as well as heterosis and recombination coefficients with performance, was quantified within a mixed model framework that also contained the fixed effects of parity; cow and contemporary group of herd-year-season of calving were both included as random effects in the mixed model. Breed proportion was associated with all milk production parameters investigated. Milk yield was greatest for Holstein (5,217kg), intermediate for Friesian (4,591kg), and least for Jersey (4,230kg), whereas milk constituents (i.e., fat and protein concentration) were greatest for Jersey (9.38%), intermediate for Friesian (7.91%), and least for Holstein (7.75%). Yield of milk solids in crossbred cows exceeded their respective parental average performance; greatest milk solids yield (i.e., fat kg + protein kg) was observed in the Holstein × Jersey first-cross, yielding 25kg more than the mid-parent mean. There was no consistent breed effect on the reproductive traits investigated. Relative to the mid-parent mean, Holstein × Jersey cows calved younger as heifers and had a shorter calving interval. Friesian × Jersey first-cross cows also had a shorter calving interval relative to their mid-parent mean. Results were consistent with findings from smaller-scale controlled experiments. Breed complementarity and heterosis attainable from crossbreeding resulted in superior animal performance and, consequently, greater expected profitability in crossbred cows compared with their respective purebreds.


Assuntos
Indústria de Laticínios , Leite/metabolismo , Animais , Bovinos , Fazendas , Feminino , Fertilidade , Lactação , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...