Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1638-1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383047

RESUMO

Several brainstem nuclei degenerate in Parkinson's disease (PD). In addition to the well-characterized dopaminergic neurons of the substantia nigra pars compacta (SNc), the cholinergic neurons of the pedunculopontine nucleus (PPN) also degenerate in PD. One leading hypothesis of selective vulnerability is that pacemaking activity and the activation of low-threshold L-type calcium current are major contributors to tonic calcium load and cellular stress in SNc dopaminergic neurons. However, it is not yet clear whether the vulnerable PPN cholinergic neurons share this property. Therefore, we used two-photon dendritic calcium imaging and whole-cell electrophysiology to evaluate the role of L-type calcium channels in tonic and phasic dendritic calcium signals in PPN and SNc neurons. In addition, we investigated N- and P/Q-type calcium channel regulation of firing properties and dendritic calcium in PPN neurons. We found that blocking L-type channels reduces tonic firing rate and dendritic calcium levels in SNc neurons. By contrast, the tonic calcium load in PPN neurons did not depend on L-, N- or P/Q-type channels. However, we found that blocking either L-type (with nifedipine) or N- and P/Q-type (with omega-conotoxin MVIIC) channels reduces phasic calcium influx in PPN dendrites. Together, these findings show that L-type calcium channels play different roles in the activity of SNc and PPN neurons, and suggest that low-threshold L-type channels are not responsible for tonic calcium levels in PPN cholinergic neurons and are therefore not likely to be a source of selective vulnerability in these cells.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Humanos , Cálcio , Canais de Cálcio Tipo L , Substância Negra/fisiologia , Neurônios Colinérgicos , Colinérgicos
2.
bioRxiv ; 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37693427

RESUMO

Several midbrain nuclei degenerate in Parkinson's Disease (PD). Many of these nuclei share the common characteristics that are thought to contribute to their selective vulnerability, including pacemaking activity and high levels of calcium influx. In addition to the well-characterized dopaminergic neurons of the substantia nigra pars compacta (SNc), the cholinergic neurons of the pedunculopontine nucleus (PPN) also degenerate in PD. It is well established that the low-threshold L-type calcium current is a main contributor to tonic calcium in SNc dopaminergic neurons and is hypothesized to contribute to their selective vulnerability. However, it is not yet clear whether the vulnerable PPN cholinergic neurons share this property. Therefore, we used two-photon dendritic calcium imaging and whole-cell electrophysiology to evaluate the role of L-type calcium channels in the tonic and phasic activity of PPN neurons and the corresponding dendritic calcium signal and directly compare these characteristics to SNc neurons. We found that blocking L-type channels reduces tonic firing rate and dendritic calcium levels in SNc neurons. By contrast, the calcium load in PPN neurons during pacemaking did not depend on L-type channels. However, we find that blocking L-type channels reduces phasic calcium influx in PPN dendrites. Together, these findings show that L-type calcium channels play different roles in the activity of SNc and PPN neurons, and suggest that low-threshold L-type channels are not responsible for tonic calcium levels in PPN cholinergic neurons and are therefore not likely to be a source of selective vulnerability in these cells.

3.
Front Neural Circuits ; 15: 644776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079441

RESUMO

Dopamine is an important chemical messenger in the brain, which modulates movement, reward, motivation, and memory. Different populations of neurons can produce and release dopamine in the brain and regulate different behaviors. Here we focus our discussion on a small but distinct group of dopamine-producing neurons, which display the most profound loss in the ventral substantia nigra pas compacta of patients with Parkinson's disease. This group of dopaminergic neurons can be readily identified by a selective expression of aldehyde dehydrogenase 1A1 (ALDH1A1) and accounts for 70% of total nigrostriatal dopaminergic neurons in both human and mouse brains. Recently, we presented the first whole-brain circuit map of these ALDH1A1-positive dopaminergic neurons and reveal an essential physiological function of these neurons in regulating the vigor of movement during the acquisition of motor skills. In this review, we first summarize previous findings of ALDH1A1-positive nigrostriatal dopaminergic neurons and their connectivity and functionality, and then provide perspectives on how the activity of ALDH1A1-positive nigrostriatal dopaminergic neurons is regulated through integrating diverse presynaptic inputs and its implications for potential Parkinson's disease treatment.


Assuntos
Neurônios Dopaminérgicos , Doença de Parkinson , Aldeído Desidrogenase , Família Aldeído Desidrogenase 1 , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Camundongos , Retinal Desidrogenase/metabolismo , Substância Negra
4.
Cell Rep ; 32(11): 108156, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937133

RESUMO

Substantia nigra (SNc) dopaminergic neurons respond to aversive stimuli with inhibitory pauses in firing followed by transient rebound activation. We tested integration of inhibitory synaptic inputs onto SNc neurons from genetically defined populations in dorsal striatum (striosome and matrix) and external globus pallidus (GPe; parvalbumin- and Lhx6-positive), and examined their contribution to pause-rebound firing. Activation of striosome projections, which target "dendron bouquets" in the pars reticulata (SNr), consistently quiets firing and relief from striosome inhibition triggers rebound activity. Striosomal inhibitory postsynaptic currents (IPSCs) display a prominent GABA-B receptor-mediated component that strengthens the impact of SNr dendrite synapses on somatic excitability and enables rebounding. By contrast, GPe projections activate GABA-A receptors on the soma and proximal dendrites but do not result in rebounding. Lastly, optical mapping shows that dorsal striatum selectively inhibits the ventral population of SNc neurons, which are intrinsically capable of rebounding. Therefore, we define a distinct striatonigral circuit for generating dopamine rebound.


Assuntos
Gânglios da Base/fisiologia , Neurônios Dopaminérgicos/fisiologia , Inibição Neural/fisiologia , Substância Negra/fisiologia , Animais , Cálcio/metabolismo , Corpo Estriado/fisiologia , Dendritos/fisiologia , Dopamina/metabolismo , Feminino , Globo Pálido/fisiologia , Masculino , Camundongos , Modelos Neurológicos , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/metabolismo
5.
Neurosci Lett ; 678: 55-61, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29738844

RESUMO

Neural networks that undergo acute insults display remarkable reorganization. This injury related plasticity is thought to permit recovery of function in the face of damage that cannot be reversed. Previously, an increase in the transmission strength at Schaffer collateral to CA1 pyramidal cell synapses was observed after long-term activity reduction in organotypic hippocampal slices. Here we report that, following acute preparation of adult rat hippocampal slices and surgical removal of area CA3, input to area CA1 was reduced and Schaffer collateral synapses underwent functional strengthening. This increase in synaptic strength was limited to Schaffer collateral inputs (no alteration to temporoammonic synapses) and acted to normalize postsynaptic discharge, supporting a homeostatic or compensatory response. Short-term plasticity was not altered, but an increase in immunohistochemical labeling of GluA1 subunits was observed in the stratum radiatum (but not stratum moleculare), suggesting increased numbers of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and a postsynaptic locus of expression. Combined, these data support the idea that, in response to the reduction in presynaptic activity caused by removal of area CA3, Schaffer collateral synapses undergo a relatively rapid increase in functional efficacy likely supported by insertion of more AMPARs, which maintains postsynaptic excitability in CA1 pyramidal neurons. This novel fast compensatory plasticity exhibits properties that would allow it to maintain optimal network activity levels in the hippocampus, a brain structure lauded for its ongoing experience-dependent malleability.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores , Hipocampo/fisiologia , Plasticidade Neuronal , Células Piramidais/fisiologia , Sinapses/fisiologia , Animais , Estimulação Elétrica , Masculino , Ratos Long-Evans , Receptores de AMPA/fisiologia
6.
Brain Res ; 1671: 1-13, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28666957

RESUMO

Neural circuits in mammalian brains consist of large numbers of different cell types having different functional properties. To better understand the separate roles of individual neuron types in specific aspects of spatial learning and memory, we perturbed the function of principal neurons in vivo during maze performance or in hippocampal slices during recording of evoked excitatory synaptic potentials. Transgenic mice expressing the Drosophila allatostatin receptor (AlstR) in cortical and hippocampal pyramidal cells were tested on an elevated plus maze, in a Y-maze, and in the Morris water maze. Relative to a control cohort, AlstR-positive mice treated with allatostatin exhibited no difference in open arm dwell time on the elevated plus maze or total number of arm entries in a Y-maze, but displayed reduced spontaneous alternation. When animals received massed or spaced training trials in the Morris water maze, and the peptide was delivered prior to an immediate probe, no effects on performance were observed. When the peptide was delivered during a probe trial performed 24h after seven days of spaced training, allatostatin delivery to AlstR positive mice enhanced direct navigation to the escape platform. Combined, these results suggest that cortical and hippocampal pyramidal neurons are required during spatial decision-making in a novel environment and compete with other neural systems after extended training in a long-term reference memory task. In hippocampal slices collected from AlstR positive animals, allatostatin delivery produced frequency dependent alterations in the Schaffer collateral fiber volley (attenuated accommodation at 100Hz) and excitatory postsynaptic potential (attenuated facilitation at 5Hz). Combined, the neural and behavioral discoveries support the involvement of short-term plasticity of Schaffer collateral axons and synapses during exploration of a novel environment and during initial orientation to a goal in a well-learned setting.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Aprendizagem/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/fisiologia , Memória Espacial/fisiologia , Animais , Axônios/fisiologia , Drosophila/anatomia & histologia , Drosophila/metabolismo , Potenciais Pós-Sinápticos Excitadores , Hipocampo/metabolismo , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Memória de Longo Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Prosencéfalo/metabolismo , Prosencéfalo/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia
7.
J Neurosci ; 37(13): 3704-3720, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28264982

RESUMO

While there is growing appreciation for diversity among ventral tegmental area dopamine neurons, much less is known regarding functional heterogeneity among the substantia nigra pars compacta (SNc) neurons. Here, we show that calbindin-positive dorsal tier and calbindin-negative ventral tier SNc dopaminergic neurons in mice comprise functionally distinct subpopulations distinguished by their dendritic calcium signaling, rebound excitation, and physiological responses to dopamine D2-receptor (D2) autoinhibition. While dopamine is known to inhibit action potential backpropagation, our experiments revealed an unexpected enhancement of excitatory responses and dendritic calcium signals in the presence of D2-receptor inhibition. Specifically, dopamine inhibition and direct hyperpolarization enabled the generation of low-threshold depolarizations that occurred in an all-or-none or graded manner, due to recruitment of T-type calcium channels. Interestingly, these effects occurred selectively in calbindin-negative dopaminergic neurons within the SNc. Thus, calbindin-positive and calbindin-negative SNc neurons differ substantially in their calcium channel composition and efficacy of excitatory inputs in the presence of dopamine inhibition.SIGNIFICANCE STATEMENT Substantia nigra dopaminergic neurons can be divided into two populations: the calbindin-negative ventral tier, which is vulnerable to neurodegeneration in Parkinson's disease, and the calbindin-positive dorsal tier, which is relatively resilient. Although tonic firing is similar in these subpopulations, we find that their responses to dopamine-mediated inhibition are strikingly different. During inhibition, calbindin-negative neurons exhibit increased sensitivity to excitatory inputs, which can then trigger large dendritic calcium transients due to strong expression of T-type calcium channels. Therefore, SNc neurons differ substantially in their calcium channel composition, which may contribute to their differential vulnerability. Furthermore, T-currents increase excitation efficacy onto calbindin-negative cells during dopamine inhibition, suggesting that shared inputs are differentially processed in subpopulations resulting in distinct downstream dopamine signals.


Assuntos
Calbindinas/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio/fisiologia , Neurônios Dopaminérgicos/classificação , Neurônios Dopaminérgicos/fisiologia , Substância Negra/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Receptores de Dopamina D2/metabolismo , Substância Negra/efeitos dos fármacos
8.
J Neurosci ; 37(12): 3311-3330, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28219982

RESUMO

Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons.SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine neurons. We show that pauses in dopamine neuron firing, evoked by either stimulation of GABAergic inputs or hyperpolarizing current injections, are enhanced by a subclass of potassium conductances that are recruited at voltages below spike threshold. Importantly, A-type potassium currents recorded in mesoaccumbal neurons displayed substantially slower inactivation kinetics, which, combined with weaker expression of hyperpolarization-activated currents, lengthened hyperpolarization-induced delays in spiking relative to nigrostriatal neurons. These results suggest that input integration differs among dopamine neurons favoring higher sensitivity to inhibition in mesoaccumbal neurons and may partially explain in vivo observations that ventral tegmental area neurons exhibit longer aversive pauses relative to SNc neurons.


Assuntos
Potenciais de Ação/fisiologia , Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/fisiologia , Inibição Neural/fisiologia , Núcleo Accumbens/fisiologia , Substância Negra/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Rede Nervosa/fisiologia , Vias Neurais/fisiologia
9.
J Neurophysiol ; 116(6): 2815-2830, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27582295

RESUMO

This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models.


Assuntos
Potenciais de Ação/fisiologia , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/citologia , Modelos Neurológicos , Animais , Humanos , Mesencéfalo/patologia , Doença de Parkinson/patologia , Esquizofrenia/patologia , Transtornos Relacionados ao Uso de Substâncias/patologia
10.
J Neurosci ; 35(29): 10535-49, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203148

RESUMO

Growing evidence supports a critical role for the dorsal striatum in cognitive as well as motor control. Both lesions and in vivo recordings demonstrate a transition in the engaged dorsal striatal subregion, from dorsomedial to dorsolateral, as skill performance shifts from an attentive phase to a more automatic or habitual phase. What are the neural mechanisms supporting the cognitive and behavioral transitions in skill learning? To pursue this question, we used T-maze training during which rats transition from early, attentive (dorsomedial) to late habitual (dorsolateral) performance. Following early or late training, we performed the first direct comparison of bidirectional synaptic plasticity in striatal brain slices, and the first evaluation of striatal synaptic plasticity by hemisphere relative to a learned turn. Consequently, we find that long-term potentiation and long-term depression are independently modulated with learning rather than reciprocally linked as previously suggested. Our results establish that modulation of evoked synaptic plasticity with learning depends on striatal subregion, training stage, and hemisphere relative to the learned turn direction. Exclusive to the contralateral hemisphere, intrinsic excitability is enhanced in dorsomedial relative to dorsolateral medium spiny neurons early in training and population responses are dampened late in training. Neuronal reconstructions indicate dendritic remodeling after training, which may represent a novel form of pruning. In conclusion, we describe region- and hemisphere-specific changes in striatal synaptic, intrinsic, and morphological plasticity which correspond to T-maze learning stages, and which may play a role in the cognitive transition between attentive and habitual strategies. Significance statement: We investigated neural plasticity in dorsal striatum from rats that were briefly or extensively trained on a directional T-maze task. Our results demonstrate that both the extent of training and the direction a rat learns to turn control the location and type of change in synaptic plasticity. In addition, brief training produces changes in neuron excitability only within one striatal subregion, whereas all training produces widespread changes in dendritic morphology. Our results suggest that activity in dorsomedial striatum strengthens the rewarded turn after brief training, whereas activity in dorsolateral striatum suppresses unrewarded turns after extensive training. This study illuminates how plasticity mediates learning using a task recognized for transitioning subjects from attentive to automatic performance.


Assuntos
Corpo Estriado/fisiologia , Lateralidade Funcional/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Atenção/fisiologia , Hábitos , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans
11.
J Neurophysiol ; 111(4): 836-48, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24304860

RESUMO

The inhibitory circuits of the striatum are known to be critical for motor function, yet their contributions to Parkinsonian motor deficits are not clear. Altered firing in the globus pallidus suggests that striatal medium spiny neurons (MSN) of the direct (D1 MSN) and indirect pathway (D2 MSN) are imbalanced during dopamine depletion. Both MSN classes receive inhibitory input from each other and from inhibitory interneurons within the striatum, specifically the fast-spiking interneurons (FSI). To investigate the role of inhibition in maintaining striatal balance, we developed a biologically-realistic striatal network model consisting of multicompartmental neuron models: 500 D1 MSNs, 500 D2 MSNs and 49 FSIs. The D1 and D2 MSN models are differentiated based on published experiments of individual channel modulations by dopamine, with D2 MSNs being more excitable than D1 MSNs. Despite this difference in response to current injection, in the network D1 and D2 MSNs fire at similar frequencies in response to excitatory synaptic input. Simulations further reveal that inhibition from FSIs connected by gap junctions is critical to produce balanced firing. Although gap junctions produce only a small increase in synchronization between FSIs, removing these connections resulted in significant firing differences between D1 and D2 MSNs, and balanced firing was restored by providing synchronized cortical input to the FSIs. Together these findings suggest that desynchronization of FSI firing is sufficient to alter balanced firing between D1 and D2 MSNs.


Assuntos
Potenciais de Ação , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Animais , Córtex Cerebral/fisiologia , Corpo Estriado/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Potenciais Sinápticos , Fatores de Tempo
12.
J Neurophysiol ; 110(9): 2027-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23926032

RESUMO

Long-term potentiation (LTP) of excitatory afferents to the dorsal striatum likely occurs with learning to encode new skills and habits, yet corticostriatal LTP is challenging to evoke reliably in brain slice under physiological conditions. Here we test the hypothesis that stimulating striatal afferents with theta-burst timing, similar to recently reported in vivo temporal patterns corresponding to learning, evokes LTP. Recording from adult mouse brain slice extracellularly in 1 mM Mg(2+), we find LTP in dorsomedial and dorsolateral striatum is preferentially evoked by certain theta-burst patterns. In particular, we demonstrate that greater LTP is produced using moderate intraburst and high theta-range frequencies, and that pauses separating bursts of stimuli are critical for LTP induction. By altering temporal pattern alone, we illustrate the importance of burst-patterning for LTP induction and demonstrate that corticostriatal long-term depression is evoked in the same preparation. In accord with prior studies, LTP is greatest in dorsomedial striatum and relies on N-methyl-d-aspartate receptors. We also demonstrate a requirement for both Gq- and Gs/olf-coupled pathways, as well as several kinases associated with memory storage: PKC, PKA, and ERK. Our data build on previous reports of activity-directed plasticity by identifying effective values for distinct temporal parameters in variants of theta-burst LTP induction paradigms. We conclude that those variants which best match reports of striatal activity during learning behavior are most successful in evoking dorsal striatal LTP in adult brain slice without altering artificial cerebrospinal fluid. Future application of this approach will enable diverse investigations of plasticity serving striatal-based learning.


Assuntos
Corpo Estriado/fisiologia , Potenciação de Longa Duração , Ritmo Teta , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Corpo Estriado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/farmacologia
13.
Front Neuroinform ; 7: 17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23986695
15.
PLoS Comput Biol ; 8(4): e1002493, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536151

RESUMO

Calcium through NMDA receptors (NMDARs) is necessary for the long-term potentiation (LTP) of synaptic strength; however, NMDARs differ in several properties that can influence the amount of calcium influx into the spine. These properties, such as sensitivity to magnesium block and conductance decay kinetics, change the receptor's response to spike timing dependent plasticity (STDP) protocols, and thereby shape synaptic integration and information processing. This study investigates the role of GluN2 subunit differences on spine calcium concentration during several STDP protocols in a model of a striatal medium spiny projection neuron (MSPN). The multi-compartment, multi-channel model exhibits firing frequency, spike width, and latency to first spike similar to current clamp data from mouse dorsal striatum MSPN. We find that NMDAR-mediated calcium is dependent on GluN2 subunit type, action potential timing, duration of somatic depolarization, and number of action potentials. Furthermore, the model demonstrates that in MSPNs, GluN2A and GluN2B control which STDP intervals allow for substantial calcium elevation in spines. The model predicts that blocking GluN2B subunits would modulate the range of intervals that cause long term potentiation. We confirmed this prediction experimentally, demonstrating that blocking GluN2B in the striatum, narrows the range of STDP intervals that cause long term potentiation. This ability of the GluN2 subunit to modulate the shape of the STDP curve could underlie the role that GluN2 subunits play in learning and development.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Corpo Estriado/metabolismo , Modelos Neurológicos , N-Metilaspartato/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Simulação por Computador , Humanos , Modelos Químicos , N-Metilaspartato/química , Subunidades Proteicas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...