Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 291(7): 3136-44, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26663076

RESUMO

The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides.


Assuntos
Antibacterianos/farmacologia , Proteínas de Arabidopsis/antagonistas & inibidores , Arabidopsis/enzimologia , Cloroplastos/efeitos dos fármacos , Ciprofloxacina/farmacologia , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Substituição de Aminoácidos , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/enzimologia , Cloroplastos/ultraestrutura , DNA Girase/química , DNA Girase/genética , DNA Girase/isolamento & purificação , Resistência a Medicamentos , Técnicas de Inativação de Genes , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Forma das Organelas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/ultraestrutura , Mutação Puntual , Conformação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Interferência de RNA , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
2.
EcoSal Plus ; 6(2)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26435256

RESUMO

DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.


Assuntos
Bactérias/enzimologia , DNA Topoisomerases Tipo II , DNA Topoisomerases Tipo I , Antibacterianos/farmacologia , Bactérias/metabolismo , Bacteriocinas/farmacologia , DNA Girase/química , DNA Girase/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA Bacteriano/química , DNA Super-Helicoidal , Modelos Moleculares , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/farmacologia
3.
PLoS One ; 5(3): e9899, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20360860

RESUMO

BACKGROUND: DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3. METHODOLOGY/PRINCIPAL FINDINGS: We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer. CONCLUSIONS/SIGNIFICANCE: These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , DNA Girase/metabolismo , DNA Topoisomerases/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Biologia Computacional , Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Meiose , Proteínas Nucleares/metabolismo , Fenótipo , Fenômenos Fisiológicos Vegetais , Pólen/metabolismo , Conformação Proteica , Técnicas do Sistema de Duplo-Híbrido
4.
EcoSal Plus ; 3(2)2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26443761

RESUMO

DNA topoisomerases are enzymes that control the topological state of DNA in all cells; they have central roles in DNA replication and transcription. They are classified into two types, I and II, depending on whether they catalyze reactions involving the breakage of one or both strands of DNA. Structural and mechanistic distinctions have led to further classifications: IA, IB, IC, IIA, and IIB. The essence of the topoisomerase reaction is the ability of the enzymes to stabilize transient breaks in DNA, via the formation of tyrosyl-phosphate covalent intermediates. The essential nature of topoisomerases and their ability to stabilize DNA breaks has led to them being key targets for antibacterial and anticancer agents. This chapter reviews the basic features of topoisomerases focussing mainly on the prokaryotic enzymes. We highlight recent structural advances that have given new insight into topoisomerase mechanisms and into the molecular basis of the action of topoisomerase-specific drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...