Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(6): 3573-3583, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425368

RESUMO

In the last years, diamond like carbon (DLC) coatings doped with both carbide forming and non-carbide forming metallic elements have attracted great interest as novel self-lubricating coatings. Due to the inherent properties of DLC, the doping process can provide adsorption sites for lubricant additives depending on the chemical and electrochemical state of the surface. Ionic liquids (ILs) are potential lubricant additives with good thermal stability, non-flammability, high polarity, and negligible volatility. These characteristics make them also ideal for polar fluids, like water-based lubricants. In this work, three different DLC coatings (DLC, W- and Ag-doped DLC) were deposited on stainless steel substrates and their friction in dry and lubricated conditions in water-based lubricants was studied. Three ILs, tributylmethylphosphonium dimethylphosphate (PP), 1,3-dimethylimidazolium dimethylphosphate (IM) and 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (BMP) were used as additives and compared with a well-known organic friction modifier (dodecanoic acid). The results showed better mechanical integrity, toughness and adhesion of the doped coatings compared to the undoped DLC. The Ag-doped DLC coating had the best mechanical properties of all the coatings. W formed tungsten carbide precipitates in the DLC coating. Two different additive-adsorption mechanisms controlled friction: a triboelectrochemical activation mechanism for Ag-DLC, and an electron-transfer mechanism for W-DLC resulting in the largest reduction in friction.

2.
Microsc Microanal ; 23(3): 584-598, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28434428

RESUMO

Lithotripsy methods show relatively low efficiency in the fragmentation of sialoliths compared with the success rates achieved in the destruction of renal calculi. However, the information available on the mechanical behavior of sialoliths is limited and their apparently tougher response is not fully understood. This work evaluates the hardness and Young's modulus of sialoliths at different scales and analyzes specific damage patterns induced in these calcified structures by ultrasonic vibrations, pneumoballistic impacts, shock waves, and laser ablation. A clear correlation between local mechanical properties and ultrastructure/chemistry has been established: sialoliths are composite materials consisting of hard and soft components of mineralized and organic nature, respectively. Ultrasonic and pneumoballistic reverberations damage preferentially highly mineralized regions, leaving relatively unaffected the surrounding organic matter. In contrast, shock waves leach the organic component and lead to erosion of the overall structure. Laser ablation destroys homogeneously the irradiated zones regardless of the mineralized/organic nature of the underlying ultrastructure; however, damage is less extensive than with mechanical methods. Overall, the present results show that composition and internal structure are key features behind sialoliths' comminution behavior and that the organic matter contributes to reduce the therapeutic efficiency of lithotripsy methods.


Assuntos
Litotripsia/métodos , Minerais/química , Cálculos das Glândulas Salivares/terapia , Dureza , Ondas de Choque de Alta Energia , Humanos , Cálculos Renais , Litotripsia/instrumentação , Fenômenos Mecânicos , Cálculos das Glândulas Salivares/química , Cálculos das Glândulas Salivares/patologia , Estresse Mecânico , Resultado do Tratamento , Terapia por Ultrassom , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...