Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acid Ther ; 29(5): 278-290, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31194620

RESUMO

Murine Krebs-2 tumor-initiating stem cells are known to natively internalize extracellular double-stranded DNA fragments. Being internalized, these fragments interfere in the repair of chemically induced interstrand cross-links. In the current investigation, 756 bp polymerase chain reaction (PCR) product containing bulky photoreactive dC adduct was used as extracellular DNA. This adduct was shown to inhibit the cellular system of nucleotide excision repair while being resistant to excision by this DNA repair system. The basic parameters for this DNA probe internalization by the murine Krebs-2 tumor cells were characterized. Being incubated under regular conditions (60 min, 24°C, 500 µL of the incubation medium, in the dark), 0.35% ± 0.18% of the Krebs-2 ascites cells were shown to natively internalize modified DNA. The saturating amount of the modified DNA was detected to be 0.37 µg per 106 cells. For the similar unmodified DNA fragments, this ratio is 0.73 µg per 106 cells. Krebs-2 tumor cells were shown to be saturated internalizing either (190 ± 40) × 103 molecules of modified DNA or (1,000 ± 100) × 103 molecules of native DNA. On internalization, the fragments of DNA undergo partial and nonuniform hydrolysis of 3' ends followed by circularization. The degree of hydrolysis, assessed by sequencing of several clones with the insertion of specific PCR product, was 30-60 nucleotides.


Assuntos
Carcinoma/genética , Adutos de DNA/genética , Fragmentação do DNA , DNA/genética , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , DNA/farmacologia , Adutos de DNA/farmacologia , Reparo do DNA/efeitos dos fármacos , Humanos , Camundongos
2.
DNA Repair (Amst) ; 61: 86-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29103991

RESUMO

Mammalian nucleotide excision repair (NER) eliminates the broadest diversity of bulky lesions from DNA with wide specificity. However, the double incision efficiency for structurally different adducts can vary over several orders of magnitude. Therefore, great attention is drawn to the question of the relationship among structural properties of bulky DNA lesions and the rate of damage elimination. This paper studies the properties of several structurally diverse synthetic (model) DNAs containing bulky modifications. Model DNAs have been designed using modified nucleosides (exo-N-{2-N-[N-(4-azido-2,5-difluoro-3-chloropyridin-6-yl)-3-aminopropionyl]aminoethyl}-2'-deoxycytidine (Fap-dC) and 5-{1-[6-(5[6]-fluoresceinylcarbomoyl)hexanoyl]-3-aminoallyl}-2'-deoxyuridine (Flu-dU)) and the nonnucleosidic reagent N-[6-(9-antracenylcarbomoyl)hexanoyl]-3-amino-1,2-propandiol (nAnt). The impact of these lesions on spatial organization and stability of the model DNA was evaluated. Their affinity for the damage sensor XPC was also studied. It was expected, that the values of melting temperature decrease, bending angles and KD values clearly define the row of model DNA substrate properties such as Flu-dU-DNA>>nAnt≈Fap-dC-DNA. Unexpectedly the experimentally estimated levels of the substrate properties were actually in the row: nAnt-DNA>>Flu-dU-DNA>>Fap-dC-DNA. Molecular dynamics simulations have revealed structural and energetic bases for the discrepancies observed. DNA destabilization patterns plotted explain these results on a structural basis in terms of differences in dynamic perturbations of stacking interactions.


Assuntos
Reparo do DNA , DNA/química , DNA/genética , Mamíferos/genética , Conformação de Ácido Nucleico , Animais , Células CHO , Cricetulus , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Polarização de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Relação Estrutura-Atividade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...