Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hydrol (Amst) ; 620(A)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39211483

RESUMO

The hillslope and channel dynamics that govern streamflow permanence in headwater systems have important implications for ecosystem functioning and downstream water quality. Recent advancements in process-based, semi-distributed hydrologic models that build upon empirical studies of streamflow permanence in well-monitored headwater catchments show promise for characterizing the dynamics of streamflow permanence in headwater systems. However, few process-based models consider the continuum of hillslope-stream network connectivity as a control on streamflow permanence in headwater systems. The objective of this study was to expand a process-based, catchment-scale hydrologic model to better understand the spatiotemporal dynamics of headwater streamflow permanence and to identify controls of streamflow expansion and contraction in a headwater network. Further, we aimed to develop an approach that enhanced the fidelity of model simulations, yet required little additional data, with the intent that the model might be later transferred to catchments with limited long-term and spatially explicit measurements. This approach facilitated network-scale estimates of the controls of streamflow expansion and contraction, albeit with higher degrees of uncertainty in individual reaches due to data constraints. Our model simulated that streamflow permanence was highly dynamic in first-order reaches with steep slopes and variable contributing areas. The simulated stream network length ranged from nearly 98±2% of the geomorphic channel extent during wet periods to nearly 50±10% during dry periods. The model identified a discharge threshold of approximately 1 mm d-1, above which the rate of streamflow expansion decreases by nearly an order of magnitude, indicating a lack of sensitivity of streamflow expansion to hydrologic forcing during high-flow periods. Overall, we demonstrate that process-based, catchment-scale models offer important insights on the controls of streamflow permanence, despite uncertainties and limitations of the model. We encourage researchers to increase data collection efforts and develop benchmarks to better evaluate such models.

2.
J Environ Manage ; 223: 37-48, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29886149

RESUMO

Despite recognizing the importance of wetlands in the Coastal Plain of the Chesapeake Bay Watershed (CBW) in terms of ecosystem services, our understanding of wetland functions has mostly been limited to individual wetlands and overall catchment-scale wetland functions have rarely been investigated. This study is aimed at assessing the cumulative impacts of wetlands on watershed hydrology for an agricultural watershed within the Coastal Plain of the CBW using the Soil and Water Assessment Tool (SWAT). We employed two improved wetland modules for enhanced representation of physical processes and spatial distribution of riparian wetlands (RWs) and geographically isolated wetlands (GIWs). This study focused on GIWs as their hydrological impacts on watershed hydrology are poorly understood and GIWs are poorly protected. Multiple wetland scenarios were prepared by removing all or portions of the baseline GIW condition indicated by the U.S. Fish and Wildlife Service National Wetlands Inventory geospatial dataset. We further compared the impacts of GIWs and RWs on downstream flow (i.e., streamflow at the watershed outlet). Our simulation results showed that GIWs strongly influenced downstream flow by altering water transport mechanisms in upstream areas. Loss of all GIWs reduced both water routed to GIWs and water infiltrated into the soil through the bottom of GIWs, leading to an increase in surface runoff of 9% and a decrease in groundwater flow of 7% in upstream areas. These changes resulted in increased variability of downstream flow in response to extreme flow conditions. GIW loss also induced an increase in month to month variability of downstream flow and a decrease in the baseflow contribution to streamflow. Loss of all GIWs was shown to cause a greater fluctuation of downstream flow than loss of all RWs for this study site, due to a greater total water storage capacity of GIWs. Our findings indicate that GIWs play a significant role in controlling hydrological processes in upstream areas and downstream flow and, therefore, protecting GIWs is important for enhanced hydrological resilience to extreme flow conditions in this region.


Assuntos
Agricultura , Movimentos da Água , Áreas Alagadas , Hidrologia , Modelos Teóricos , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA