Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(14): e2400066121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38536754

RESUMO

The inherently low signal-to-noise ratio of NMR and MRI is now being addressed by hyperpolarization methods. For example, iridium-based catalysts that reversibly bind both parahydrogen and ligands in solution can hyperpolarize protons (SABRE) or heteronuclei (X-SABRE) on a wide variety of ligands, using a complex interplay of spin dynamics and chemical exchange processes, with common signal enhancements between 103 and 104. This does not approach obvious theoretical limits, and further enhancement would be valuable in many applications (such as imaging mM concentration species in vivo). Most SABRE/X-SABRE implementations require far lower fields (µT-mT) than standard magnetic resonance (>1T), and this gives an additional degree of freedom: the ability to fully modulate fields in three dimensions. However, this has been underexplored because the standard simplifying theoretical assumptions in magnetic resonance need to be revisited. Here, we take a different approach, an evolutionary strategy algorithm for numerical optimization, multi-axis computer-aided heteronuclear transfer enhancement for SABRE (MACHETE-SABRE). We find nonintuitive but highly efficient multiaxial pulse sequences which experimentally can produce a sevenfold improvement in polarization over continuous excitation. This approach optimizes polarization differently than traditional methods, thus gaining extra efficiency.

2.
J Chem Phys ; 156(8): 084116, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232189

RESUMO

The connection between the adiabatic excitation energy of time-dependent density functional theory and the ground state correlation energy from the adiabatic connection fluctuation-dissipation theorem (ACFDT) is explored in the limiting case of one excited state. An exact expression is derived for any adiabatic Hartree-exchange-correlation kernel that connects the excitation energy and the potential contribution to correlation. The resulting formula is applied to the asymmetric Hubbard dimer, a system where this limit is exact. Results from a hierarchy of approximations to the kernel, including the random phase approximation (RPA) with and without exchange and the adiabatically exact (AE) approximation, are compared to the exact ones. At full coupling, the numerical results indicate a tension between predicting an accurate excitation energy and an accurate potential contribution to correlation. The AE approximation is capable of making accurate predictions of both quantities, but only in parts of the parameter space that classify as weakly correlated, while RPA tends to be unable to accurately predict these properties simultaneously anywhere. For a strongly correlated dimer, the AE approximation greatly overestimates the excitation energy yet continues to yield an accurate ground state correlation energy due to its accurate prediction of the adiabatic connection integrand. If similar trends hold for real systems, the development of correlation kernels will be important for applications of the ACFDT in systems with large potential contributions to correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...