Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(24): 10729-10739, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38829283

RESUMO

Per- and polyfluoroalkyl substances (PFASs) have been detected in an array of environmental media due to their ubiquitous use in industrial and consumer products as well as potential release from fluorochemical manufacturing facilities. During their manufacture, many fluorotelomer (FT) facilities rely on neutral intermediates in polymer production including the FT-alcohols (FTOHs). These PFAS are known to transform to the terminal acids (perfluoro carboxylic acids; PFCAs) at rates that vary with environmental conditions. In the current study on soils from a FT facility, we employed gas chromatography coupled with conventional- and high-resolution mass spectrometry (GC-MS and GC-HRMS) to investigate the profile of these precursor compounds, the intermediary secondary alcohols (sFTOHs), FT-acrylates (FTAcr), and FT-acetates (FTAce) in soils around the former FT-production facility. Of these precursors, the general trend in detection intensity was [FTOHs] > [sFTOHs] > [FTAcrs], while for the FTOHs, homologue intensities generally were [12:2 FTOH] > [14:2 FTOH] > [16:2 FTOH] > [10:2 FTOH] > [18:2 FTOH] > [20:2 FTOH] > [8:2 FTOH] ∼ [6:2 FTOH]. The corresponding terminal acids were also detected in all soil samples and positively correlated with the precursor concentrations. GC-HRMS confirmed the presence of industrial manufacturing byproducts such as FT-ethers and FT-esters and aided in the tentative identification of previously unreported dimers and other compounds. The application of GC-HRMS to the measurement and identification of precursor PFAS is in its infancy, but the methodologies described here will help refine its use in tentatively identifying these compounds in the environment.


Assuntos
Fluorocarbonos , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas , Monitoramento Ambiental , Instalações Industriais e de Manufatura
2.
J Fish Biol ; 103(5): 1178-1189, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37492948

RESUMO

There is a pressing need for more-holistic approaches to fisheries assessments along with growing demand to reduce the health impacts of sample collections. Metabolomic tools enable the use of sample matrices that can be collected with minimal impact on the organism (e.g., blood, urine, and mucus) and provide high-throughput, untargeted biochemical information without the requirement of a sequenced genome. These qualities make metabolomics ideal for monitoring a wide range of fish species, particularly those under protected status. In the current study, we surveyed the relative abundances of 120 endogenous metabolites in epidermal mucus across eight freshwater fish species belonging to seven phylogenetic orders. Principal component analysis was used to provide an overview of the data set, revealing strong interspecies relationships in the epidermal mucous metabolome. Normalized relative abundances of individual endogenous metabolites were then used to identify commonalities across multiple species, as well as those metabolites that showed notable species specificity. For example, taurine was measured in high relative abundance in the epidermal mucus of common carp (Cyprinus carpio), northern pike (Esox lucius), golden shiner (Notemigonus crysoleucas), rainbow trout (Oncorhynchus mykiss), and rainbow smelt (Osmerus mordax), whereas γ-amino butyric acid (GABA) exhibited a uniquely high relative abundance in flathead catfish (Pylodictis olivaris). Finally, hierarchical cluster analysis was used to evaluate species relatedness as characterized by both the epidermal mucous metabolome (phenotype) and genetic phylogeny (genotype). This comparison revealed species for which relatedness in the epidermal mucous metabolome composition closely aligns with phylogenetic relatedness (e.g., N. crysoleucas and C. carpio), as well as species for which these two measures are not well aligned (e.g., P. olivaris and Polyodon spathula). These, and other findings reported here, highlight novel areas for future research with fish, including development of epidermal mucous-based markers for non-invasive health monitoring, sex determination, and hypoxia tolerance.


Assuntos
Carpas , Cyprinidae , Ictaluridae , Oncorhynchus mykiss , Osmeriformes , Animais , Filogenia , Metaboloma , Esocidae , Muco , Água Doce , Oncorhynchus mykiss/metabolismo
3.
Environ Sci Technol ; 57(24): 8994-9004, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37290100

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are globally distributed and potentially toxic compounds. We report accumulation of chloroperfluoropolyethercarboxylates (Cl-PFPECAs) and perfluorocarboxylates (PFCAs) in vegetation and subsoils in New Jersey. Lower molecular weight Cl-PFPECAs, containing 7-10 fluorinated carbons, and PFCAs containing 3-6 fluorinated carbons were enriched in vegetation relative to surface soils. Subsoils were dominated by lower molecular weight Cl-PFPECAs, a divergence from surface soils. Contrastingly, PFCA homologue profiles in subsoils were similar to surface soils, likely reflecting temporal-use patterns. Accumulation factors (AFs) for vegetation and subsoils decreased with increasing CF2, 6-13 for vegetation and 8-13 in subsoils. In vegetation, for PFCAs having CF2 = 3-6, AFs diminished with increasing CF2 as a more sensitive function than for longer chains. Considering that PFAS manufacturing has transitioned from long-chain chemistry to short-chain, this elevated vegetative accumulation of short-chain PFAS suggests the potential for unanticipated PFAS exposure levels globally in human and/or wildlife populations. This inverse relationship between AFs and CF2-count in terrestrial vegetation is opposite the positive relationship reported in aquatic vegetation suggesting aquatic food webs may be preferentially enriched in long-chain PFAS. AFs normalized to soil-water concentrations increased with chain length for CF2 = 6-13 in vegetation but remained inversely related to chain length for CF2 = 3-6, reflecting a fundamental change in vegetation affinity for short chains compared to long.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Fluorocarbonos/análise , Solo , Cadeia Alimentar , Poluentes Químicos da Água/análise
4.
Environ Sci Technol ; 56(12): 7779-7788, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617513

RESUMO

Although next-generation per- and polyfluorinated substances (PFAS) were designed and implemented as safer and environmentally degradable alternatives to "forever" legacy PFAS, there is little evidence to support the actual transformation of these compounds and less evidence of the safety of transformed products in the environment. Multiple congeners of one such PFAS alternative, the chloro-perfluoropolyether carboxylates (Cl-PFPECAs), have been found in New Jersey soils surrounding a manufacturing facility. These compounds are ideal candidates for investigating environmental transformation due to the existence of potential reaction centers including a chlorinated carbon and ether linkages. Transformation products of the chemical structures of this class of compounds were predicted based on analogous PFAS transformation pathways documented in peer-reviewed literature. Potential reaction products were used as the basis for high-resolution mass-spectrometric suspect screening of the soils. Suspected transformation products of multiple congeners, the Cl-PFPECAs, including H-PFPECAs, epox-PFPECAs, and diOH-PFPECAs, were tentatively observed in these screenings. Although ether linkages have been hypothesized as potential reaction centers under environmental conditions, to date, no documentation of ether scission has been identified. Despite exhaustive scrutiny of the high-resolution data for our Cl-PFPECA-laden soils, we found no evidence of ether scission.


Assuntos
Fluorocarbonos , Ácidos Carboxílicos , Éter , Éteres , Fluorocarbonos/análise , New Jersey , Solo
5.
Science ; 375(6580): eabg9065, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35113710

RESUMO

Over the past several years, the term PFAS (per- and polyfluoroalkyl substances) has grown to be emblematic of environmental contamination, garnering public, scientific, and regulatory concern. PFAS are synthesized by two processes, direct fluorination (e.g., electrochemical fluorination) and oligomerization (e.g., fluorotelomerization). More than a megatonne of PFAS is produced yearly, and thousands of PFAS wind up in end-use products. Atmospheric and aqueous fugitive releases during manufacturing, use, and disposal have resulted in the global distribution of these compounds. Volatile PFAS facilitate long-range transport, commonly followed by complex transformation schemes to recalcitrant terminal PFAS, which do not degrade under environmental conditions and thus migrate through the environment and accumulate in biota through multiple pathways. Efforts to remediate PFAS-contaminated matrices still are in their infancy, with much current research targeting drinking water.


Assuntos
Poluentes Ambientais , Polímeros de Fluorcarboneto , Fluorocarbonos , Animais , Biodegradação Ambiental , Água Potável/química , Exposição Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Recuperação e Remediação Ambiental , Polímeros de Fluorcarboneto/análise , Polímeros de Fluorcarboneto/química , Polímeros de Fluorcarboneto/toxicidade , Fluorocarbonos/análise , Fluorocarbonos/química , Fluorocarbonos/toxicidade , Halogenação , Humanos , Poluição Química da Água/análise
6.
ACS ES T Water ; 2(12): 2481-2490, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288388

RESUMO

The complexity of contaminant mixtures in surface waters has presented long-standing challenges to the assessment of risks to human health and the environment. As a result, novel strategies for both identifying contaminants that have not been routinely monitored through targeted methods and prioritizing detected compounds with respect to their biological relevance are needed. Tracking biotransformation products in biofluids and tissues in an untargeted fashion facilitates the identification of chemicals taken up by the resident species (e.g., fish), so by default ensuring that detected compounds are biologically relevant in terms of exposure. In this study, we investigated xenobiotic glucuronidation, which is arguably the most important phase II metabolism pathway for many pharmaceuticals, pesticides, and other environmental contaminants. The application of an untargeted high-resolution mass spectrometry-based approach tentatively revealed the presence of over 70 biologically relevant xenobiotics in bile collected from male and female fathead minnows exposed to wastewater treatment plant effluents. The majority of these were not targets of conventional contaminant monitoring. These results highlight the utility of biologically based untargeted screening methods when evaluating chemical contaminants in complex environmental mixtures.

7.
J Biol Chem ; 292(39): 16044-16054, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28790174

RESUMO

The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.


Assuntos
DNA/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sítios de Ligação , DNA/química , Pegada de DNA , Dimerização , Deleção de Genes , Cinética , Camundongos , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transativadores/química , Transativadores/genética
8.
Nucleic Acids Res ; 44(18): 8576-8587, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27566150

RESUMO

A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2'deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications.


Assuntos
Adenina/análogos & derivados , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Adenina/química , Adenina/metabolismo , Sequência de Bases , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos/química , Prótons , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...