Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 11347, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647245

RESUMO

During last decades there has been considerable interest in developing a fiber amplifier for the 1.3-[Formula: see text]m spectral region that is comparable in performance to the Er-doped fiber amplifier operating near 1.55 [Formula: see text]m. It is due to the fact that most of the existing fiber-optic communication systems that dominate terrestrial networks could be used for the data transmission in O-band (1260-1360 nm), where dispersion compensation is not required, providing a low-cost increase of the capacity. In this regard, significant efforts of the research laboratories were initially directed towards the study of the praseodymium-doped fluoride fiber amplifier having high gain and output powers at the desired wavelengths. However, despite the fact that this type of amplifiers had rapidly appeared as a commercial amplifier prototype it did not receive widespread demand in the telecom industry because of its low efficiency. It stimulated the search of novel optical materials for this purpose. About 10 years ago, a new type of bismuth-doped active fibers was developed, which turned out to be a promising medium for amplification at 1.3 [Formula: see text]m. Here, we report on the development of a compact and efficient 20-dB (achieved for signal powers between [Formula: see text] and [Formula: see text] dBm) bismuth-doped fiber amplifier for a wavelength region of 1300-1350 nm in the forward, backward and bi-directional configurations, which can be pumped by a commercially available laser diode at 1230 nm with an output power of 250 mW. The compactness of the tested amplifier was provided by using a depressed cladding active fiber with low bending loss, which was coiled on a reel with a radius of 1.5 cm. We studied the gain and noise figure characteristics at different pump and signal powers. A record gain coefficient of 0.18 dB/mW (at the pump-to-signal power conversion efficiency of above 27[Formula: see text]) has been achieved.

2.
Opt Lett ; 45(9): 2576-2579, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32356820

RESUMO

For the first time, we report on the fabrication of a bend-insensitive single-mode bismuth (Bi)-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $P2O5-SiO2 fiber having a depressed cladding design and study its gain characteristics at a spectral region of 1.3-1.4 µm. It was shown that the obtained Bi-doped fiber can efficiently operate in the spectral band even at a bend radius of 1.5 cm. In addition, it was shown that this type of fiber has a smaller mode-field diameter in comparison with a step-index single-mode Bi-doped $ {{\rm P}_2}{{\rm O}_5} {-} {{\rm SiO}_2} $P2O5-SiO2 fiber with $ \Delta {n} \approx 0.006 $Δn≈0.006 that resulted in a decrease of saturation power and, as a consequence, in a reduction of the total pump power required to a high-level-gain operation. The laser and gain experiments show the possibility of the construction of a compact high-performance optical amplifier for O-band based on the depressed-cladding Bi-doped fiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...