Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793652

RESUMO

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Assuntos
Acinetobacter , Cápsulas Bacterianas , Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/enzimologia , Bacteriófagos/classificação , Acinetobacter/virologia , Acinetobacter/genética , Acinetobacter/enzimologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/genética , Acinetobacter baumannii/virologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Glicosídeo Hidrolases
2.
Viruses ; 16(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543771

RESUMO

The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.


Assuntos
Bacteriófagos , Xanthomonas , Bacteriófagos/genética , Xanthomonas/genética , Filogenia , DNA Polimerase Dirigida por DNA/genética
3.
Plants (Basel) ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475514

RESUMO

Many bacterial plant pathogens have a broad host range important for their life cycle. Alternate hosts from plant families other than the main (primary) host support the survival and dissemination of the pathogen population even in absence of main host plants. Metabolic peculiarities of main and alternative host plants can affect genetic diversity within and between the pathogen populations isolated from those plants. Strains of Gram-positive bacterium Curtobacterium flaccumfaciens were identified as being causal agents of bacterial spot and wilt diseases on leguminous plants, and other crop and weed plants, collected in different regions of Russia. Their biochemical properties and susceptibility to copper compounds have been found to be relatively uniform. According to conventional PCR assays, all of the isolates studied were categorised as pathovar Curtobacterim flaccumfaciens pv. flaccumfaciens, a pathogen of legumes. However, the strains demonstrated a substantial diversity in terms of virulence on several tested host plants and different phylogenetic relationships were revealed by BOX-PCR and alanine synthase gene (alaS) sequencing.

4.
Viruses ; 16(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399973

RESUMO

Phages of phytopathogenic bacteria are considered to be promising agents for the biological control of bacterial diseases in plants. This paper reports on the isolation and characterisation of a new Xanthomonas campestris pv. campestris phage, Murka. Phage morphology and basic kinetic characteristics of the infection were determined, and a phylogenomic analysis was performed. The phage was able to lyse a reasonably broad range (64%, 9 of the 14 of the Xanthomonas campestris pv. campestris strains used in the study) of circulating strains of the cabbage black rot pathogen. This lytic myovirus has a DNA genome of 44,044 bp and contains 83 predicted genes. Taxonomically, it belongs to the genus Foxunavirus. This bacteriophage is promising for use as a possible means of biological control of cabbage black rot.


Assuntos
Bacteriófagos , Brassica , Xanthomonas campestris , Xanthomonas campestris/genética , Bacteriófagos/genética , Brassica/microbiologia
5.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396752

RESUMO

Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus-host bacteria interaction.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Filogenia , Genoma Viral , Myoviridae/genética , Genômica
6.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139119

RESUMO

Klebsiella pneumoniae is a pathogen associated with various infection types, which often exhibits multiple antibiotic resistance. Phages, or bacterial viruses, have an ability to specifically target and destroy K. pneumoniae, offering a potential means of combatting multidrug-resistant infections. Phage enzymes are another promising therapeutic agent that can break down bacterial capsular polysaccharide, which shields K. pneumoniae from the immune response and external factors. In this study, Klebsiella phage K5 was isolated; this phage is active against Klebsiella pneumoniae with the capsular type K21. It was demonstrated that the phage can effectively lyse the host culture. The adsorption apparatus of the phage has revealed two receptor-binding proteins (RBPs) with predicted polysaccharide depolymerising activity. A recombinant form of both RBPs was obtained and experiments showed that one of them depolymerised the capsular polysaccharide K21. The structure of this polysaccharide and its degradation fragments were analysed. The second receptor-binding protein showed no activity on capsular polysaccharide of any of the 31 capsule types tested, so the substrate for this enzyme remains to be determined in the future. Klebsiella phage K5 may be considered a useful agent against Klebsiella infections.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Humanos , Klebsiella , Klebsiella pneumoniae/metabolismo , Bacteriófagos/fisiologia , Infecções por Klebsiella/microbiologia , Polissacarídeos Bacterianos/metabolismo
7.
Int J Biol Macromol ; 244: 125403, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37330077

RESUMO

The clinical isolate of Klebsiella pneumoniae 1333/P225 was revealed as containing a KL108 K. pneumoniae K locus for capsule biosynthesis. The gene cluster demonstrated a high level of sequence and arrangement similarity with that of the E. coli colanic acid biosynthesis gene cluster. The KL108 gene cluster includes a gene of WcaD polymerase responsible for joining oligosaccharide K units into capsular polysaccharide (CPS), acetyltransferase, pyruvyltransferasefive and genes for glycosyltransferases (Gtrs), four of which have homologues in genetic units of the colanic acid synthesis. The fifth Gtr is specific to this cluster. The work involved the use of sugar analysis, Smith degradation and one- and two-dimensional 1H and 13C NMR spectroscopy to establish the structure of the K108 CPS. The CPS repetitive K unit is composed of branched pentasaccharide with three monosaccharides in the backbone and a disaccharide side chain. The main chain is the same as for colanic acid but the side chain differs. Two bacteriophages infecting K. pneumoniae strain 1333/P225 were isolated and structural depolymerase genes were determined; depolymerases Dep108.1 and Dep108.2 were cloned, expressed and purified. It was demonstrated that both depolymerases specifically cleave the ß-Glcp-(1→4)-α-Fucp linkage between K108 units in the CPS.


Assuntos
Escherichia coli , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Polissacarídeos Bacterianos/química , Família Multigênica
8.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240444

RESUMO

Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described Friunavirus phage, APK37.1, were characterized. For all TSDs, the mechanism of specific cleavage of corresponding A. baumannii capsular polysaccharides (CPSs) was established. The structures of oligosaccharide fragments derived from K9, K14, K16, K37/K3-v1, K86, K127, and K128 CPSs degradation by the recombinant depolymerases have been determined. The crystal structures of three of the studied TSDs were obtained. A significant reduction in mortality of Galleria mellonella larvae infected with A. baumannii of K9 capsular type was shown in the example of recombinant TSD APK09_gp48. The data obtained will provide a better understanding of the interaction of phage-bacterial host systems and will contribute to the formation of principles of rational usage of lytic phages and phage-derived enzymes as antibacterial agents.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Mariposas , Animais , Bacteriófagos/genética , Acinetobacter baumannii/metabolismo , Larva/microbiologia , Antibacterianos/metabolismo
9.
Plant Dis ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471471

RESUMO

Curtobacterium flaccumfaciens pv. flaccumfaciens (H.) Collins & Jones is known as a pathogen of different legume crops, including soybean (Glycine max (L.) Merr.) (Hedges 1922; Dunleavy 1983). OEPP/EPPO (2011) considers C. flaccumfaciens pv. flaccumfaciens as present in Russia based on reports of the disease on common beans in two regions of Russia (North Caucasus and Far East) made without proper pathogen identification. During the summer of 2020 and the spring of 2021, soybean plants with tan spot disease (10-40% of plants) were reported during routine assays of several fields in Stavropol Krai (44.72°N, 43.29°E). After harvest in 2021, we inspected 48 soybean seed lots collected in different regions of Russia for the presence of C. flaccumfaciens pv. flaccumfaciens. Seed testing was performed using the OEPP/EPPO (2011) protocol. For bacteria isolation, seed extracts were spread on MSCFF agar plates (Maringoni et al. 2006). After 5 days of incubation at 28°C potential, C. flaccumfaciens pv. flaccumfaciens colonies were used for further tests on NSA and SSM agar (Tegli et al. 2017, Maringoni et al. 2016). Six seed lots produced in Stavropol, Ryazan (53.95°N, 40.62°E), Orel (52.39°N, 37.69°E) and Amur (51.31°N, 128.22°E) regions were suspect. Ten isolates (SB1 to SB4 from Stavropol, F-125-1 to F-125-3 from Ryazan, and F-30-1 to F-30-3 from Amur) were selected, and further identified by morphological, physiological, and biochemical properties, MALDI TOF MS, 16S rRNA sequences, and specific primers CffFOR2 and CffREV4 (Tegli et al. 2017). Isolates consistently formed yellow, circular, smooth colonies on agar, and were identical to C. flaccumfaciens pv. flaccumfaciens type strain DSM 20129T in diagnostic physiological properties (Tegli et al. 2017). DNA was isolated from the bacteria by the CytoSorb Kit (Sintol, Moscow). All tested strains were positive in the PCR assay (Fig. 1). 16S rRNA fragments were amplified using primers 27F/1492R (Marchesi et al. 1998) and PCR products were sequenced (Evrogen, Moscow, Russia). The obtained 16S rRNA sequences (1473 bp, Accession No. OL539808.1-OL539817.1) were 100% identical to DSM 20129T (AM410688.1) according to a BLAST NCBI search. A pathogenicity test was done by leaf-cutting with scissors wetted with inoculum (for soybeans) or by injecting 5 microliters of the bacterial suspension (108 CFU/ml) into the stem (for common beans). All ten isolates for the inoculum were grown on nutrient agar for 72 h at 28°C. Soybean cv. Kasatka plants (stage V1) were used for inoculation, and common bean (cv. Purpurnaya) plants were inoculated as well to confirm multi-host virulence. Sterile water served as a control. Ten plantlets were used as replicates for each treatment. The plants were incubated at 24°C, 80% RH, and a 14 hour light/10 hour dark cycle. Tan spots (soybean) and wilt (beans) have developed 7-21 d.p.i (Fig. 2.1-2.6). Control plants remained asymptomatic. Seed inoculation by soaking them in the same bacterial suspension repeatedly produced twisted primary root (Fig. 2.7-2.8), but typical disease symptoms on leaves developed in 4-5 weeks only. The pathogen was successfully reisolated from all infected plants and not from the controls, thus fulfilling Koch's postulates. The identity of the reisolated strains was confirmed using morphological and physiological characteristics and the DNA sequence data for the 16S rRNA. These results indicated that a causal agent of the tan spot is present on soybean in three important agricultural areas of Russia (South, Central, and the Far East). To the best of our knowledge, this is the first report of C. flaccumfaciens pv. flaccumfaciens causing a bacterial tan spot of soybean in Russia.

10.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232343

RESUMO

Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot.


Assuntos
Bacteriófagos , Pectobacterium , Podoviridae , Bacteriófagos/genética , Genoma Viral , Pectobacterium/genética , Filogenia , Podoviridae/genética , Polissacarídeos
11.
Plant Dis ; 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36281013

RESUMO

In the summer of 2018, wilt and leaf spots were observed on sunflower (Helianthus annuus L.) plants in fields near Kursk (51.74°N, 36.02°E) in Russia. In the following years, incidence of this disease was 5 to 20% in the inspected fields. Marginal chlorosis on seedling leaves developed into wilt and necrosis about one week later (Fig. 1). Mature plants had leaves with blight and reduced height compared to symptomless plants. Pathogen isolation from seeds was done by the method of Tegli et al. (2002) with modifications. Bacteria from diseased plants were isolated by streaking inoculum from symptomatic tissues on nutrient dextrose agar (NDA) (Schaad et al. 1988). The plates were incubated at 30°C for 7 to 10 days. Isolates consistently formed slow-growing, yellow, circular, smooth colonies without soluble pigment. The isolated bacteria were aerobic, gram-positive, and rod-shaped. Eight strains, CF-20 to CF-26 from plants, and Curt1 and Curt3 from seeds, were identified by MALDI TOF MS analysis as Curtobacterium flaccumfaciens pv. flaccumfaciens or C. flaccumfaciens pv. poinsettiae. All strains had GENIII MicroPlate (BIOLOG) test results identical to C. flaccumfaciens pv. flaccumfaciens strain DSM20129T. Further analysis was done by specific PCR (Tegli et al. 2002) and 16S rDNA, gyrB, and atpD gene sequencing. For PCR amplification, DNA was extracted by the CitoSorb Kit (Syntol Co., Moscow). Primers 27F/1492R (16S rRNA) (Marchesi et al. 1998), 2F/6R (gyrB) (Richert et al. 2005), and aptD2F/aptD2R (Jacques et al. 2012) were used to amplify the target gene sequences. The PCR products were sequenced by Evrogen (Moscow). The 16S rRNA sequences (OL584192.1 to OL584199.1) were identical to that of C. flaccumfaciens pv. flaccumfaciens strain DSM20129T (AM410688.1; 1,477/1,477 bp). The phylogenetic tree of concatenated gyrB (560 bp) and atpD (716 bp) sequences (OL548915.1 to OL548922.1 and OL548923.1 to OL548930.1, respectively) clustered the strains from sunflower among C. flaccumfaciens pv. flaccumfaciens, C. flaccumfaciens pv. betae, and C. flaccumfaciens pv. oortii (Fig. 2) with high genetic similarity to other C. flaccumfaciens strains: 96.3 to 100% for atpD and 95 to 100% for gyrB. A pathogenicity test for each of the strains was performed by injecting 5 µl of a bacterial suspension (108 CFU/ml) grown for 72 h on NDA into the stems of five plantlets (four true leaf stage) of the sunflower cv. Tunka (Limagrain, France) and soybean cv. Kasatka (VIM, Russia). Strain DSM20129T was a positive control, while sterile water was a negative control. The plants were incubated at 24°C, 80% relative humidity, and 14-h light/day. Wilting and blight on sunflower (Fig. 3) and tan spots on soybean were observed in 15 to 20 days after inoculation for all sunflower strains and strain DSM20129T. The negative control plants were asymptomatic. The bacteria re-isolated from the inoculated plants exhibited the same morphological characteristics and 16S rDNA sequence as the original culture, thus fulfilling Koch's postulates. The presence of C. flaccumfaciens pv. flaccumfaciens in sunflower seeds indicated that the bacterium was transmitted via seed. Sunflower has been previously reported as a host for the pathogen (Harveson et al. 2015). The presence of C. flaccumfaciens pv. flaccumfaciens on beans in Russia was suggested from the disease symptoms (Nikitina and Korsakov 1978), but, to our knowledge, this is the first report of the pathogen affecting sunflower in Russia. Phytosanitary categorization placed C. flaccumfaciens pv. flaccumfaciens in the EPPO A2 list (EPPO 2011). Thus, sunflower seeds should be tested to protect pathogen-free areas from introduction of this pathogen.

12.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142829

RESUMO

Diseases caused by the Gram-positive bacterium Curtobacteriumflaccumfaciens pv. flaccumfaciens (Cff) inflict substantial economic losses in soybean cultivation. Use of specific bacterial viruses (bacteriophages) for treatment of seeds and plants to prevent the development of bacterial infections is a promising approach for bioprotection in agriculture. Phage control has been successfully tested for a number of staple crops. However, this approach has never been applied to treat bacterial diseases of legumes caused by Cff, and no specific bacteriophages have been known to date. This paper presents detailed characteristics of the first lytic bacteriophage infecting this pathogen. Phage Ayka, related to φ29-like (Salasmaviridae) viruses, but representing a new subfamily, was shown to control the development of bacterial wilt and tan spot in vitro and in greenhouse plants.


Assuntos
Actinomycetales , Infecções Bacterianas , Bacteriófagos , Fabaceae , Actinobacteria , Bactérias , Fabaceae/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Glycine max
13.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563361

RESUMO

In this study, several different depolymerases encoded in the prophage regions of Acinetobacter baumannii genomes have been bioinformatically predicted and recombinantly produced. The identified depolymerases possessed multi-domain structures and were identical or closely homologous to various proteins encoded in other A. baumannii genomes. This means that prophage-derived depolymerases are widespread, and different bacterial genomes can be the source of proteins with polysaccharide-degrading activities. For two depolymerases, the specificity to capsular polysaccharides (CPSs) of A. baumannii belonging to K1 and K92 capsular types (K types) was determined. The data obtained showed that the prophage-derived depolymerases were glycosidases that cleaved the A. baumannii CPSs by the hydrolytic mechanism to yield monomers and oligomers of the K units. The recombinant proteins with established enzymatic activity significantly reduced the mortality of Galleria mellonella larvae infected with A. baumannii of K1 and K92 capsular types. Therefore, these enzymes can be considered as suitable candidates for the development of new antibacterials against corresponding A. baumannii K types.


Assuntos
Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Bacteriófagos/química , Bacteriófagos/metabolismo , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Prófagos/genética , Prófagos/metabolismo
14.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406917

RESUMO

Bacterial viruses (bacteriophages) have been considered as potential agents for the biological control of bacterial phytopathogens due to their safety and host specificity. Pseudomonas savastanoi pv. glycinea (Psg) is a causative agent of the bacterial spotting of soybean (Glycine max Willd). The harm caused by this bacterium to crop production and the development of antibiotic resistance in Psg and other pathogenic microorganisms has led to the pursuit of alternative management strategies. In this study, three Psg-specific lytic bacteriophages were isolated from soybean field soil in geographically distant regions of Russia, and their potential for protective action on plants was assessed. Sequencing of phage genomes has revealed their close relatedness and attribution to the genus Ghunavirus, subfamily Studiervirinae, family Autographiviridae. Extensive testing of the biological properties of P421, the representative of the isolated phage group, has demonstrated a relatively broad host range covering closely related Pseudomonas species and stability over wide temperature (4-40 °C) and pH (pH 4-7) ranges, as well as stability under ultraviolet irradiation for 30 min. Application of the phages to prevent, and treat, Psg infection of soybean plants confirms that they are promising as biocontrol agents.

15.
Plants (Basel) ; 10(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34579412

RESUMO

Pectobacterium parmentieri is a plant-pathogenic bacterium, recently attributed as a separate species, which infects potatoes, causing soft rot in tubers. The distribution of P. parmentieri seems to be global, although the bacterium tends to be accommodated to moderate climates. Fast and accurate detection systems for this pathogen are needed to study its biology and to identify latent infection in potatoes and other plant hosts. The current paper reports on the development of a specific and sensitive detection protocol based on a real-time PCR with a TaqMan probe for P. parmentieri, and its evaluation. In sensitivity assays, the detection threshold of this protocol was 102 cfu/mL on pure bacterial cultures and 102-103 cfu/mL on plant material. The specificity of the protocol was evaluated against P. parmentieri and more than 100 strains of potato-associated species of Pectobacterium and Dickeya. No cross-reaction with the non-target bacterial species, or loss of sensitivity, was observed. This specific and sensitive diagnostic tool may reveal a wider distribution and host range for P. parmentieri and will expand knowledge of the life cycle and environmental preferences of this pathogen.

16.
Microorganisms ; 9(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34576713

RESUMO

The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.

17.
Microorganisms ; 9(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576831

RESUMO

Micromycetes are known to secrete numerous enzymes of biotechnological and medical potential. Fibrinolytic protease-activator of protein C (PAPC) of blood plasma from micromycete Aspergillus ochraceus VKM-F4104D was obtained in recombinant form utilising the bacterial expression system. This enzyme, which belongs to the proteinase-K-like proteases, is similar to the proteases encoded in the genomes of Aspergillus fumigatus ATCC MYA-4609, A. oryzae ATCC 42149 and A. flavus 28. Mature PAPC-4104 is 282 amino acids long, preceded by the 101-amino acid propeptide necessary for proper folding and maturation. The recombinant protease was identical to the native enzyme from micromycete in terms of its biological properties, including an ability to hydrolyse substrates of activated protein C (pGlu-Pro-Arg-pNA) and factor Xa (Z-D-Arg-Gly-Arg-pNA) in conjugant reactions with human blood plasma. Therefore, recombinant PAPC-4104 can potentially be used in medicine, veterinary science, diagnostics, and other applications.

18.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578271

RESUMO

Acinetobacter baumannii appears to be one of the most crucial nosocomial pathogens. A possible component of antimicrobial therapy for infections caused by extremely drug-resistant A. baumannii strains may be specific lytic bacteriophages or phage-derived enzymes. In the present study, we observe the biological features, genomic organization, and phage-host interaction strategy of novel virulent bacteriophage Aristophanes isolated on A. baumannii strain having K26 capsular polysaccharide structure. According to phylogenetic analysis phage Aristophanes can be classified as a representative of a new distinct genus of the subfamily Beijerinckvirinae of the family Autographiviridae. This is the first reported A. baumannii phage carrying tailspike deacetylase, which caused O-acetylation of one of the K26 sugar residues.


Assuntos
Acinetobacter baumannii/virologia , Amidoidrolases/genética , Bacteriófagos/enzimologia , Bacteriófagos/genética , Proteínas Virais/genética , Cápsulas Bacterianas/química , Bacteriófagos/isolamento & purificação , Genoma Viral , Genômica , Interações entre Hospedeiro e Microrganismos , Análise de Sequência de DNA
19.
Plants (Basel) ; 10(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668425

RESUMO

The recent taxonomic diversification of bacterial genera Pectobacterium and Dickeya, which cause soft rot in plants, focuses attention on the need for improvement of existing methods for the detection and differentiation of these phytopathogens. This research presents a whole genome-based approach to the selection of marker sequences unique to particular species of Pectobacterium. The quantitative real-time PCR assay developed is selective in the context of all tested Pectobacterium atrosepticum strains and is able to detect fewer than 102 copies of target DNA per reaction. The presence of plant DNA extract did not affect the sensitivity of the assay.

20.
Microorganisms ; 8(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142811

RESUMO

Black leg and soft rot are devastating diseases causing up to 50% loss of potential potato yield. The search for, and characterization of, bacterial viruses (bacteriophages) suitable for the control of these diseases is currently a sought-after task for agricultural microbiology. Isolated lytic Pectobacterium bacteriophages Q19, PP47 and PP81 possess a similar broad host range but differ in their genomic properties. The genomic features of characterized phages have been described and compared to other Studiervirinae bacteriophages. Thorough phylogenetic analysis has clarified the taxonomy of the phages and their positioning relative to other genera of the Autographiviridae family. Pectobacterium phage Q19 seems to represent a new genus not described previously. The genomes of the phages are generally similar to the genome of phage T7 of the Teseptimavirus genus but possess a number of specific features. Examination of the structure of the genes and proteins of the phages, including the tail spike protein, underlines the important role of horizontal gene exchange in the evolution of these phages, assisting their adaptation to Pectobacterium hosts. The results provide the basis for the development of bacteriophage-based biocontrol of potato soft rot as an alternative to the use of antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...