Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Chem ; 111: 108110, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815500

RESUMO

The recent advances in artificial intelligence modern approaches can play vital roles in the Internet of Medical Things (IoMT). Automatic diagnosis is one of the most important topics in the IoMT, including cancer diagnosis. Breast cancer is one of the top causes of death among women. Accurate diagnosis and early detection of breast cancer can improve the survival rate of patients. Deep learning models have demonstrated outstanding potential in accurately detecting and diagnosing breast cancer. This paper proposes a novel technology for breast cancer detection using CrossViT as the deep learning model and an enhanced version of the Growth Optimizer algorithm (MGO) as the feature selection method. CrossVit is a hybrid deep learning model that combines the strengths of both convolutional neural networks (CNNs) and transformers. The MGO is a meta-heuristic algorithm that selects the most relevant features from a large pool of features to enhance the performance of the model. The developed approach was evaluated on three publicly available breast cancer datasets and achieved competitive performance compared to other state-of-the-art methods. The results show that the combination of CrossViT and the MGO can effectively identify the most informative features for breast cancer detection, potentially assisting clinicians in making accurate diagnoses and improving patient outcomes. The MGO algorithm improves accuracy by approximately 1.59% on INbreast, 5.00% on MIAS, and 0.79% on MiniDDSM compared to other methods on each respective dataset. The developed approach can also be utilized to improve the Quality of Service (QoS) in the healthcare system as a deployable IoT-based intelligent solution or a decision-making assistance service, enhancing the efficiency and precision of the diagnosis.


Assuntos
Algoritmos , Neoplasias da Mama , Humanos , Neoplasias da Mama/diagnóstico , Feminino , Aprendizado Profundo , Redes Neurais de Computação , Internet das Coisas
2.
Sci Rep ; 13(1): 15019, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699992

RESUMO

This paper presents a machine learning-based technique for interpreting bone scintigraphy images, focusing on feature extraction and introducing a new feature selection method called GJOW. GJOW enhances the effectiveness of the golden jackal optimization (GJO) algorithm by integrating operators from the whale optimization algorithm (WOA). The technique's performance is evaluated through extensive experiments using 18 benchmark datasets and 581 bone scan images obtained from a gamma camera, including 362 abnormal and 219 normal cases. The results highlight the superior predictive effectiveness of the GJOW algorithm in bone metastasis detection, achieving an accuracy of 71.79% and specificity of 91.14%. The contributions of this study include the introduction of a new machine learning-based approach for detecting bone metastasis using gamma camera scans, leading to improved accuracy in identifying bone metastases. The findings have practical implications for early detection and intervention, potentially improving patient outcomes.


Assuntos
Neoplasias Ósseas , Canidae , Humanos , Animais , Baleias , Chacais , Tomografia Computadorizada por Raios X , Algoritmos , Benchmarking , Neoplasias Ósseas/diagnóstico por imagem
3.
Environ Sci Pollut Res Int ; 30(12): 33780-33794, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495438

RESUMO

A sustainable environment by decreasing fossil fuel utilization and anthropogenic greenhouse gases is a globally main goal due to climate change and serious air pollution. Carbon dioxide (CO2) is a heat-trapping (greenhouse) that is released into the earth's atmosphere from natural processes, such as volcanic respiration and eruptions, as well as human activities, such as burning fossil fuels and deforestation. Due to this fact, underground carbon storage (UCS) is a promising technology to cut carbon emissions. However, there are some barriers to prevent UCS from applying globally. One of them is evaluating the feasibility of storage projects. Thus, the prediction accuracy of CO2 storage efficiencies may promote the attention of the community for UCS. In this study, we utilize the recent advances of swarm intelligence to develop a hybrid algorithm called AOSMA, employed to train the long short-term memory (LSTM). The developed swarm intelligence method (AOSMA) is an enhanced Aquila optimizer (AO) using the search mechanism of the slime mould algorithm (SMA). It is used to boost the prediction capability of the LSTM by optimizing its parameters. We considered two CO2 trapping indices, called residual trapping index (RTI) and solubility trapping index (STI). The evaluation experiments have shown that the AOSMA achieved significant results compared to the original AO and SMA and several swarm intelligence and optimization algorithms. The developed smart tools could use as a game changer to provide fast and accurate storage efficiency for projects that have similar parameters falling within the range of the database.


Assuntos
Poluição do Ar , Água Subterrânea , Humanos , Dióxido de Carbono/análise , Memória de Curto Prazo , Poluição do Ar/prevenção & controle , Combustíveis Fósseis
4.
Neural Comput Appl ; 35(4): 3307-3324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36245794

RESUMO

Feature selection techniques are considered one of the most important preprocessing steps, which has the most significant influence on the performance of data analysis and decision making. These FS techniques aim to achieve several objectives (such as reducing classification error and minimizing the number of features) at the same time to increase the classification rate. FS based on Metaheuristic (MH) is considered one of the most promising techniques to improve the classification process. This paper presents a modified method of the Slime mould algorithm depending on the Marine Predators Algorithm (MPA) operators as a local search strategy, which leads to increasing the convergence rate of the developed method, named SMAMPA and avoiding the attraction to local optima. The efficiency of SMAMPA is evaluated using twenty datasets and compared its results with the state-of-the-art FS methods. In addition, the applicability of SMAMPA to work with real-world problems is evaluated by using it as a quantitative structure-activity relationship (QSAR) model. The obtained results show the high ability of the developed SMAMPA method to reduce the dimension of the tested datasets by increasing the prediction rate. In addition, it provides results better than other FS techniques in terms of performance metrics.

5.
Entropy (Basel) ; 24(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421530

RESUMO

The forecasting and prediction of crude oil are necessary in enabling governments to compile their economic plans. Artificial neural networks (ANN) have been widely used in different forecasting and prediction applications, including in the oil industry. The dendritic neural regression (DNR) model is an ANNs that has showed promising performance in time-series prediction. The DNR has the capability to deal with the nonlinear characteristics of historical data for time-series forecasting applications. However, it faces certain limitations in training and configuring its parameters. To this end, we utilized the power of metaheuristic optimization algorithms to boost the training process and optimize its parameters. A comprehensive evaluation is presented in this study with six MH optimization algorithms used for this purpose: whale optimization algorithm (WOA), particle swarm optimization algorithm (PSO), genetic algorithm (GA), sine-cosine algorithm (SCA), differential evolution (DE), and harmony search algorithm (HS). We used oil-production datasets for historical records of crude oil production from seven real-world oilfields (from Tahe oilfields, in China), provided by a local partner. Extensive evaluation experiments were carried out using several performance measures to study the validity of the DNR with MH optimization methods in time-series applications. The findings of this study have confirmed the applicability of MH with DNR. The applications of MH methods improved the performance of the original DNR. We also concluded that the PSO and WOA achieved the best performance compared with other methods.

6.
Environ Sci Pollut Res Int ; 29(14): 20496-20516, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741267

RESUMO

Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.


Assuntos
Algoritmos , Águas Residuárias , Aprendizado de Máquina
7.
J Pet Explor Prod Technol ; 12(2): 383-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34926107

RESUMO

Oil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference system (ANFIS). This model is improved by using an optimization algorithm, the slime mould algorithm (SMA). The SMA is a new algorithm that is applied for solving different optimization tasks. However, its search mechanism suffers from some limitations, for example, trapping at local optima. Thus, we modify the SMA using an intelligence search technique called opposition-based learning (OLB). The developed model, ANFIS-SMAOLB, is evaluated with different real-world oil production data collected from two oilfields in two different countries, Masila oilfield (Yemen) and Tahe oilfield (China). Furthermore, the evaluation of this model is considered with extensive comparisons to several methods, using several evaluation measures. The outcomes assessed the high ability of the developed ANFIS-SMAOLB as an efficient time series forecasting model that showed significant performance.

8.
Entropy (Basel) ; 23(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34573818

RESUMO

With the widespread use of intelligent information systems, a massive amount of data with lots of irrelevant, noisy, and redundant features are collected; moreover, many features should be handled. Therefore, introducing an efficient feature selection (FS) approach becomes a challenging aim. In the recent decade, various artificial methods and swarm models inspired by biological and social systems have been proposed to solve different problems, including FS. Thus, in this paper, an innovative approach is proposed based on a hybrid integration between two intelligent algorithms, Electric fish optimization (EFO) and the arithmetic optimization algorithm (AOA), to boost the exploration stage of EFO to process the high dimensional FS problems with a remarkable convergence speed. The proposed EFOAOA is examined with eighteen datasets for different real-life applications. The EFOAOA results are compared with a set of recent state-of-the-art optimizers using a set of statistical metrics and the Friedman test. The comparisons show the positive impact of integrating the AOA operator in the EFO, as the proposed EFOAOA can identify the most important features with high accuracy and efficiency. Compared to the other FS methods whereas, it got the lowest features number and the highest accuracy in 50% and 67% of the datasets, respectively.

9.
Appl Soft Comput ; 101: 107052, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33519325

RESUMO

Classification of COVID-19 X-ray images to determine the patient's health condition is a critical issue these days since X-ray images provide more information about the patient's lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm (CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-class classification optimization task. The classification process includes three classes, called normal patients, COVID-19 infected patients, and pneumonia patients. The distributions used are Mittag-Leffler distribution, Cauchy distribution, Pareto distribution, and Weibull distribution. The proposed FO-CS variants have been validated with eighteen UCI data-sets as the first series of experiments. For the second series of experiments, two data-sets for COVID-19 X-ray images are considered. The proposed approach results have been compared with well-regarded optimization algorithms. The outcomes assess the superiority of the proposed approach for providing accurate results for UCI and COVID-19 data-sets with remarkable improvements in the convergence curves, especially with applying Weibull distribution instead of Lévy flight.

10.
Multimed Tools Appl ; 80(8): 12435-12468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456315

RESUMO

Multilevel thresholding image segmentation has received considerable attention in several image processing applications. However, the process of determining the optimal threshold values (as the preprocessing step) is time-consuming when traditional methods are used. Although these limitations can be addressed by applying metaheuristic methods, such approaches may be idle with a local solution. This study proposed an alternative multilevel thresholding image segmentation method called VPLWOA, which is an improved version of the volleyball premier league (VPL) algorithm using the whale optimization algorithm (WOA). In VPLWOA, the WOA is used as a local search system to improve the learning phase of the VPL algorithm. A set of experimental series is performed using two different image datasets to assess the performance of the VPLWOA in determining the values that may be optimal threshold, and the performance of this algorithm is compared with other approaches. Experimental results show that the proposed VPLWOA outperforms the other approaches in terms of several performance measures, such as signal-to-noise ratio and structural similarity index.

11.
Environ Res ; 194: 110607, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345891

RESUMO

In this study, we propose an improved version of the adaptive neuro-fuzzy inference system (ANFIS) for forecasting the air quality index in Wuhan City, China. We propose a hybrid optimization method to improve ANFIS performance, called PSOSMA, using a new modified meta-heuristics (MH) algorithm, Slime mould algorithm (SMA), which is improved by using the particle swarm optimizer (PSO). The proposed PSOSMA-ANFIS has been trained with air quality index time series data of three years and has been applied to forecast the fine particulate matter (PM2.5), sulfur dioxide (SO2), carbon dioxide (CO2), and nitrogen dioxide (NO2) for one year. We also compared the proposed PSOSMA to other MH algorithms used to train ANFIS. We found that the modified ANFIS using PSOSMA achieved better performance than compared algorithms. Moreover, we analyzed the impacts of the lockdown of Wuhan City on the concentrations of PM2.5, NO2, CO2, and SO2. We compared the correspondence period with previous years, and we concluded that there are significant decreases in the concentrations of PM2.5, CO2, SO2, and NO2.


Assuntos
Poluição do Ar , COVID-19 , Poluição do Ar/análise , China , Cidades , Controle de Doenças Transmissíveis , Humanos , Material Particulado/análise , SARS-CoV-2
12.
Process Saf Environ Prot ; 149: 399-409, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33204052

RESUMO

COVID-19 is a new member of the Coronaviridae family that has serious effects on respiratory, gastrointestinal, and neurological systems. COVID-19 spreads quickly worldwide and affects more than 41.5 million persons (till 23 October 2020). It has a high hazard to the safety and health of people all over the world. COVID-19 has been declared as a global pandemic by the World Health Organization (WHO). Therefore, strict special policies and plans should be made to face this pandemic. Forecasting COVID-19 cases in hotspot regions is a critical issue, as it helps the policymakers to develop their future plans. In this paper, we propose a new short term forecasting model using an enhanced version of the adaptive neuro-fuzzy inference system (ANFIS). An improved marine predators algorithm (MPA), called chaotic MPA (CMPA), is applied to enhance the ANFIS and to avoid its shortcomings. More so, we compared the proposed CMPA with three artificial intelligence-based models include the original ANFIS, and two modified versions of ANFIS model using both of the original marine predators algorithm (MPA) and particle swarm optimization (PSO). The forecasting accuracy of the models was compared using different statistical assessment criteria. CMPA significantly outperformed all other investigated models.

13.
Entropy (Basel) ; 22(3)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33286101

RESUMO

Multi-level thresholding is one of the effective segmentation methods that have been applied in many applications. Traditional methods face challenges in determining the suitable threshold values; therefore, metaheuristic (MH) methods have been adopted to solve these challenges. In general, MH methods had been proposed by simulating natural behaviors of swarm ecosystems, such as birds, animals, and others. The current study proposes an alternative multi-level thresholding method based on a new MH method, a modified spherical search optimizer (SSO). This was performed by using the operators of the sine cosine algorithm (SCA) to enhance the exploitation ability of the SSO. Moreover, Fuzzy entropy is applied as the main fitness function to evaluate the quality of each solution inside the population of the proposed SSOSCA since Fuzzy entropy has established its performance in literature. Several images from the well-known Berkeley dataset were used to test and evaluate the proposed method. The evaluation outcomes approved that SSOSCA showed better performance than several existing methods according to different image segmentation measures.

14.
Sci Rep ; 10(1): 15364, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958781

RESUMO

Currently, we witness the severe spread of the pandemic of the new Corona virus, COVID-19, which causes dangerous symptoms to humans and animals, its complications may lead to death. Although convolutional neural networks (CNNs) is considered the current state-of-the-art image classification technique, it needs massive computational cost for deployment and training. In this paper, we propose an improved hybrid classification approach for COVID-19 images by combining the strengths of CNNs (using a powerful architecture called Inception) to extract features and a swarm-based feature selection algorithm (Marine Predators Algorithm) to select the most relevant features. A combination of fractional-order and marine predators algorithm (FO-MPA) is considered an integration among a robust tool in mathematics named fractional-order calculus (FO). The proposed approach was evaluated on two public COVID-19 X-ray datasets which achieves both high performance and reduction of computational complexity. The two datasets consist of X-ray COVID-19 images by international Cardiothoracic radiologist, researchers and others published on Kaggle. The proposed approach selected successfully 130 and 86 out of 51 K features extracted by inception from dataset 1 and dataset 2, while improving classification accuracy at the same time. The results are the best achieved on these datasets when compared to a set of recent feature selection algorithms. By achieving 98.7%, 98.2% and 99.6%, 99% of classification accuracy and F-Score for dataset 1 and dataset 2, respectively, the proposed approach outperforms several CNNs and all recent works on COVID-19 images.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/diagnóstico , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/diagnóstico , Algoritmos , Betacoronavirus , COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , Pandemias , SARS-CoV-2 , Raios X
15.
Sci Rep ; 10(1): 11108, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632118

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32443409

RESUMO

Influenza epidemic is a serious threat to the entire world, which causes thousands of death every year and can be considered as a public health emergency that needs to be more addressed and investigated. Forecasting influenza incidences or confirmed cases is very important to do the necessary policies and plans for governments and health organizations. In this paper, we present an enhanced adaptive neuro-fuzzy inference system (ANFIS) to forecast the weekly confirmed influenza cases in China and the USA using official datasets. To overcome the limitations of the original ANFIS, we use two metaheuristics, called flower pollination algorithm (FPA) and sine cosine algorithm (SCA), to enhance the prediction of the ANFIS. The proposed FPASCA-ANFIS is evaluated using two datasets collected from the CDC and WHO websites. Furthermore, it was compared to some previous state-of-the-art approaches. Experimental results confirmed that the FPASCA-ANFIS outperformed the compared methods using variant measures, including RMSRE, MAPE, MAE, and R 2 .


Assuntos
Lógica Fuzzy , Influenza Humana , Algoritmos , China , Previsões , Humanos , Influenza Humana/epidemiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-32443476

RESUMO

The current pandemic of the new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or COVID-19, has received wide attention by scholars and researchers. The vast increase in infected people is a significant challenge for each country and the international community in general. The prediction and forecasting of the number of infected people (so-called confirmed cases) is a critical issue that helps in understanding the fast spread of COVID-19. Therefore, in this article, we present an improved version of the ANFIS (adaptive neuro-fuzzy inference system) model to forecast the number of infected people in four countries, Italy, Iran, Korea, and the USA. The improved version of ANFIS is based on a new nature-inspired optimizer, called the marine predators algorithm (MPA). The MPA is utilized to optimize the ANFIS parameters, enhancing its forecasting performance. Official datasets of the four countries are used to evaluate the proposed MPA-ANFIS. Moreover, we compare MPA-ANFIS to several previous methods to evaluate its forecasting performance. Overall, the outcomes show that MPA-ANFIS outperforms all compared methods in almost all performance measures, such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), and Coefficient of Determination( R 2 ). For instance, according to the results of the testing set, the R 2 of the proposed model is 96.48%, 98.59%, 98.74%, and 95.95% for Korea, Italy, Iran, and the USA, respectively. More so, the MAE is 60.31, 3951.94, 217.27, and 12,979, for Korea, Italy, Iran, and the USA, respectively.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Algoritmos , COVID-19 , Previsões , Humanos , Irã (Geográfico) , Itália , República da Coreia , SARS-CoV-2 , Estados Unidos
18.
J Clin Med ; 9(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131537

RESUMO

In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.

19.
Sci Rep ; 10(1): 5058, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32193487

RESUMO

Recently, significant attention has been devoted to vaccine-derived poliovirus (VDPV) surveillance due to its severe consequences. Prediction of the outbreak incidence of VDPF requires an accurate analysis of the alarming data. The overarching aim to this study is to develop a novel hybrid machine learning approach to identify the key parameters that dominate the outbreak incidence of VDPV. The proposed method is based on the integration of random vector functional link (RVFL) networks with a robust optimization algorithm called whale optimization algorithm (WOA). WOA is applied to improve the accuracy of the RVFL network by finding the suitable parameter configurations for the algorithm. The classification performance of the WOA-RVFL method is successfully validated using a number of datasets from the UCI machine learning repository. Thereafter, the method is implemented to track the VDPV outbreak incidences recently occurred in several provinces in Lao People's Democratic Republic. The results demonstrate the accuracy and efficiency of the WOA-RVFL algorithm in detecting the VDPV outbreak incidences, as well as its superior performance to the traditional RVFL method.


Assuntos
Monitoramento Epidemiológico , Aprendizado de Máquina , Poliomielite/epidemiologia , Poliomielite/etiologia , Vacinas contra Poliovirus/efeitos adversos , Poliovirus , Algoritmos , Surtos de Doenças , Previsões , Humanos , Incidência , Laos/epidemiologia , Paraplegia/epidemiologia , Paraplegia/etiologia , Paraplegia/prevenção & controle , Poliomielite/imunologia , Poliomielite/virologia
20.
Sci Rep ; 10(1): 2536, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054876

RESUMO

White Blood Cell (WBC) Leukaemia is caused by excessive production of leukocytes in the bone marrow, and image-based detection of malignant WBCs is important for its detection. Convolutional Neural Networks (CNNs) present the current state-of-the-art for this type of image classification, but their computational cost for training and deployment can be high. We here present an improved hybrid approach for efficient classification of WBC Leukemia. We first extract features from WBC images using VGGNet, a powerful CNN architecture, pre-trained on ImageNet. The extracted features are then filtered using a statistically enhanced Salp Swarm Algorithm (SESSA). This bio-inspired optimization algorithm selects the most relevant features and removes highly correlated and noisy features. We applied the proposed approach to two public WBC Leukemia reference datasets and achieve both high accuracy and reduced computational complexity. The SESSA optimization selected only 1 K out of 25 K features extracted with VGGNet, while improving accuracy at the same time. The results are among the best achieved on these datasets and outperform several convolutional network models. We expect that the combination of CNN feature extraction and SESSA feature optimization could be useful for many other image classification tasks.


Assuntos
Medula Óssea/diagnóstico por imagem , Leucemia/diagnóstico por imagem , Leucócitos/patologia , Aprendizado de Máquina , Algoritmos , Medula Óssea/patologia , Humanos , Processamento de Imagem Assistida por Computador , Leucemia/sangue , Leucemia/patologia , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...