Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiome ; 19(1): 30, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715076

RESUMO

BACKGROUND: Soil microbial communities are difficult to measure and critical to soil processes. The bulk soil microbiome is highly diverse and spatially heterogeneous, which can make it difficult to detect and monitor the responses of microbial communities to differences or changes in management, such as different crop rotations in agricultural research. Sampling a subset of actively growing microbes should promote monitoring how soil microbial communities respond to management by reducing the variation contributed by high microbial spatial and temporal heterogeneity and less active microbes. We tested an in-growth bag method using sterilized soil in root-excluding mesh, "sterile sentinels," for the capacity to differentiate between crop rotations. We assessed the utility of different incubation times and compared colonized sentinels to concurrently sampled bulk soils for the statistical power to differentiate microbial community composition in low and high diversity crop rotations. We paired this method with Oxford Nanopore MinION sequencing to assess sterile sentinels as a standardized, fast turn-around monitoring method. RESULTS: Compared to bulk soil, sentinels provided greater statistical power to distinguish between crop rotations for bacterial communities and equivalent power for fungal communities. The incubation time did not affect the statistical power to detect treatment differences in community composition, although longer incubation time increased total biomass. Bulk and sentinel soil samples contained shared and unique microbial taxa that were differentially abundant between crop rotations. CONCLUSIONS: Overall, compared to bulk soils, the sentinels captured taxa with copiotrophic or ruderal traits, and plant-associated taxa. The sentinels show promise as a sensitive, scalable method to monitor soil microbial communities and provide information complementary to traditional soil sampling.

2.
PNAS Nexus ; 2(4): pgad084, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113979

RESUMO

Agriculture is a designed system with the largest areal footprint of any human activity. In some cases, the designs within agriculture emerged over thousands of years, such as the use of rows for the spatial organization of crops. In other cases, designs were deliberately chosen and implemented over decades, as during the Green Revolution. Currently, much work in the agricultural sciences focuses on evaluating designs that could improve agriculture's sustainability. However, approaches to agricultural system design are diverse and fragmented, relying on individual intuition and discipline-specific methods to meet stakeholders' often semi-incompatible goals. This ad-hoc approach presents the risk that agricultural science will overlook nonobvious designs with large societal benefits. Here, we introduce a state space framework, a common approach from computer science, to address the problem of proposing and evaluating agricultural designs computationally. This approach overcomes limitations of current agricultural system design methods by enabling a general set of computational abstractions to explore and select from a very large agricultural design space, which can then be empirically tested.

3.
Glob Chang Biol ; 29(6): 1471-1483, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36478041

RESUMO

Increasing soil organic carbon (SOC) stocks is increasingly targeted as a key strategy in climate change mitigation and improved ecosystem resiliency. Agricultural land, a dominant global land use, provides substantial challenges and opportunities for global carbon sequestration. Despite this, global estimates of soil carbon sequestration potential often exclude agricultural land and estimates are coarse for regions in the Global South. To address these discrepancies and improve estimates, we develop a hybrid, data-augmented database approach to better estimate the magnitude of SOC sequestration potential of agricultural soils. With high-resolution (30 m) soil maps of Africa developed by the International Soils Database (iSDA) and Malawi as a case study, we create a national adjustment using site-specific soil data retrieved from 1160 agricultural fields. We use a benchmark approach to estimate the amount of SOC Malawian agricultural soils can sequester, accounting for edaphic and climatic conditions, and calculate the resulting carbon gap. Field measurements of SOC stocks and sequestration potentials were consistently larger than iSDA predictions, with an average carbon gap of 4.42 ± 0.23 Mg C ha-1 to a depth of 20 cm, with some areas exceeding 10 Mg C ha-1 . Augmenting iSDA predictions with field data also improved sensitivity to identify areas with high SOC sequestration potential by 6%-areas that may benefit from improved management practices. Overall, we estimate that 6.8 million ha of surface soil suitable for agriculture in Malawi has the potential to store 274 ± 14 Tg SOC. Our approach illustrates how ground truthing efforts remain essential to reduce errors in continent-wide soil carbon predictions for local and regional use. This work begins efforts needed across regions to develop soil carbon benchmarks that inform policies and identify high-impact areas in the effort to increase SOC globally.


Assuntos
Carbono , Solo , Fazendas , Ecossistema , Agricultura , Sequestro de Carbono
5.
Commun Biol ; 3(1): 300, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528188

RESUMO

Cover cropping is considered a cornerstone practice in sustainable agriculture; however, little attention has been paid to the cover crop production supply chain. In this Perspective, we estimate land use requirements to supply the United States maize production area with cover crop seed, finding that across 18 cover crops, on average 3.8% (median 2.0%) of current production area would be required, with the popular cover crops rye and hairy vetch requiring as much as 4.5% and 11.9%, respectively. The latter land requirement is comparable to the annual amount of maize grain lost to disease in the U.S. We highlight avenues for reducing these high land use costs.


Assuntos
Agricultura/economia , Análise Custo-Benefício , Produção Agrícola/economia , Produtos Agrícolas/crescimento & desenvolvimento , Recuperação e Remediação Ambiental/economia , Agricultura/métodos , Biomassa , Produção Agrícola/métodos , Recuperação e Remediação Ambiental/métodos , Estados Unidos
6.
PLoS One ; 14(12): e0227079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31877180

RESUMO

Since the mid-20th century, crop breeding has driven unprecedented yield gains. Breeders generally select for broadly- and reliably-performing varieties that display little genotype-by-environment interaction (GxE). In contrast, ecological theory predicts that across environments that vary spatially or temporally, the most productive population will be a mixture of narrowly adapted specialists. We quantified patterns of broad and narrow adaptation in modern, commercial maize (Zea mays L.) hybrids planted across 216 site-years, from 1999-2018, for the University of Illinois yield trials. We found that location was the dominant source of yield variation (44.5%), and yearly weather was the smallest (1.7%), which suggested a benefit for reliable performance in narrow biophysical environments. Varieties displayed a large "home field advantage" when growing in the location of best performance relative to other varieties. Home field advantage accounted for 19% of GxE and provided a yield increase of 1.01 ± 0.04 Mg ∙ ha-1 (7.6% relative to mean yield), yet was both smaller than predicted by a null model and unchanged across time. This counterfactual suggests that commercial breeding programs have missed an opportunity to further increase yields by leveraging local adaptation. Public breeding programs may pursue this opportunity by releasing specialist varieties that perform reliably in narrow environments. As seed sources are increasingly privatized and consolidated, this alternate strategy may compliment private breeding to support global food security.


Assuntos
Melhoramento Vegetal/métodos , Zea mays/genética , Interação Gene-Ambiente , Genótipo , Hibridização Genética , Fenótipo , Zea mays/crescimento & desenvolvimento
8.
Front Plant Sci ; 7: 65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904043

RESUMO

There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in agricultural systems, allowing sustainable temporal intensification while protecting and enhancing soil functioning.

9.
J Inorg Biochem ; 140: 104-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25105866

RESUMO

The X-linked inhibitor of apoptosis protein (XIAP) is a zinc metalloprotein that has recently been implicated in copper homeostasis. XIAP mediates apoptosis via the inhibition of caspase enzymes through multiple baculovirus IAP repeat (BIR) domains, wherein zinc is coordinated by three cysteine amino acids and one histidine amino acid. XIAP binds copper ions directly at one or more unspecified sites, indicating that the protein may function as a copper sensor. We report the copper-binding properties of an XIAP construct containing the BIR2 and BIR3 domains. Absorption and emission spectroscopic measurements show that XIAP exhibits only a low-to-moderate affinity for Cu(II), but a strong affinity for Cu(I). Cu(I) is observed to bind at multiple sites within the BIR2 and BIR3 domains, including the CXXC motifs of the zinc structural sites and multiple BIR2 surface sites. Mutagenesis-based experiments reveal that surface cysteine residues mediate binding in the BIR2 domain and induce protein oligomerization under elevated copper concentrations. These results constitute the first spectroscopic evidence of copper-XIAP interactions.


Assuntos
Cobre/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Sequência de Aminoácidos , Cobre/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...