Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276938

RESUMO

BackgroundDespite high vaccination rates in the Netherlands, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate. Longitudinal sewage monitoring was implemented along with the notification of cases as two parts of the surveillance pyramid to validate the use of sewage surveillance for monitoring SARS-CoV-2, as an early warning tool, and to measure the effect of interventions. MethodsSewage samples were collected from nine neighborhoods from September 2020 to November 2021, and compared with reported cases. Comparative analysis and modeling were performed to understand the correlation between wastewater and case trends. FindingsUsing high resolution sampling, normalization of wastewater SARS-CoV-2 concentrations and normalization of reported positive tests for testing delay and intensity, the incidence of reported positive tests could be modeled based on sewage data, and trends in both surveillance systems coincided. The high collinearity implied that high levels of viral shedding around the onset of disease largely determines SARS-CoV-2 levels in wastewater and the observed relation was independent of SARS-CoV-2 variants and vaccination levels. InterpretationWastewater surveillance can accurately display SARS-CoV-2 dynamics for small and large locations, and is sensitive enough to measure small variations in the number of infected individuals within or between neighborhoods. With the transition to a post-acute phase of the pandemic, continued sewage surveillance can help to keep sight on reemergence, but continued "pyramid" validation studies are needed to assess the predictive value of sewage surveillance with new variants. FundingHorizon H2020, Adessium Foundation, STOWA, TKI, Ministry of Health, Welfare and Sport

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266889

RESUMO

Over the course of the COVID-19 pandemic in 2020-2021, monitoring of SARS-CoV-2 RNA in wastewater has rapidly evolved into a supplementary surveillance instrument for public health. Short term trends (2 weeks) are used as a basis for policy and decision making on measures for dealing with the pandemic. Normalization is required to account for the varying dilution rates of the domestic wastewater, that contains the shedded virus RNA. The dilution rate varies due to runoff, industrial discharges and extraneous waters. Three normalization methods using flow, conductivity and CrAssphage, have been investigated on 9 monitoring locations between Sep 2020 and Aug 2021, rendering 1071 24-hour flow-proportional samples. In addition, 221 stool samples have been analyzed to determine the daily CrAssphage load per person. Results show that flow normalization supported by a quality check using conductivity monitoring is the advocated normalization method in case flow monitoring is or can be made available. Although Crassphage shedding rates per person vary greatly, the CrAssphage loads were very consistent over time and space and direct CrAssphage based normalization can be applied reliably for populations of 5600 and above.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20211524

RESUMO

We present an in-depth analysis of data from drive through testing stations using rapid antigen detection tests (RDTs), RT-PCR and virus culture, to assess the ability of RDTs to detect infectious cases. We show that the detection limits of five commercially available RDTs differ considerably, impacting the translation into the detection of infectious cases. We recommend careful fit-for-purpose testing before implementation of antigen RDTs in routine testing algorithms as part of the COVID-19 response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...