Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20157040

RESUMO

BackgroundCOVID-19 has put unprecedented pressure on healthcare systems worldwide, leading to a reduction of the available healthcare capacity. Our objective was to develop a decision model that supports prioritization of care from a utilitarian perspective, which is to minimize population health loss. MethodsA cohort state-transition model was developed and applied to 43 semi-elective non-paediatric surgeries commonly performed in academic hospitals. Scenarios of delaying surgery from two weeks were compared with delaying up to one year, and no surgery at all. Model parameters were based on registries, scientific literature, and the World Health Organization global burden of disease study. For each surgery, the urgency was estimated as the average expected loss of Quality-Adjusted Life-Years (QALYs) per month. ResultsGiven the best available evidence, the two most urgent surgeries were bypass surgery for Fontaine III/IV peripheral arterial disease (0.23 QALY loss/month, 95%-CI: 0.09-0.24) and transaortic valve implantation (0.15 QALY loss/month, 95%-CI: 0.09-0.24). The two least urgent surgeries were placing a shunt for dialysis (0.01, 95%-CI: 0.005-0.01) and thyroid carcinoma resection (0.01, 95%-CI: 0.01-0.02): these surgeries were associated with a limited amount of health lost on the waiting list. ConclusionExpected health loss due to surgical delay can be objectively calculated with our decision model based on best available evidence, which can guide prioritization of surgeries to minimize population health loss in times of scarcity. This tool should yet be placed in the context of different ethical perspectives and combined with capacity management tools to facilitate large-scale implementation. Summary boxO_ST_ABSWhat is already known on this topicC_ST_ABSThe perspective of maximizing population health, a utilitarian ethical perspective, has been described to be most defendable in times of scarcity. To prioritize surgical patients, literature mainly discusses approaches which are intra-disciplinary (e.g. within gynecological or oncological surgery) and mostly existed of narrative reviews of the literature. Some decision tools were developed, which rely on the consensus of experts on various measures of urgency (e.g. health benefit, or time until inoperable). No approach was found which transparently weighs objective factors in order to quantify a clinically relevant measure of urgency. What this study addsIn contrast to previously developed approaches, our approach transparently and consistently aggregates best available objective evidence across disciplines. This novel aggregated urgency measure can be easily linked with capacity management tools. Our approach can help to minimize health losses when trying to overcome delay in surgeries in times of surgical scarcity, during the COVID-19 pandemic and beyond.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20130328

RESUMO

BackgroundSARS-CoV-2 is straining healthcare systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate between patients requiring hospitalization and those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision making during the pandemic. However, the model is at high risk of bias according to the Prediction model Risk Of Bias ASsessment Tool and has not been externally validated. MethodsWe followed the OHDSI framework for external validation to assess the reliability of the C-19 model. We evaluated the model on two different target populations: i) 41,381 patients that have SARS-CoV-2 at an outpatient or emergency room visit and ii) 9,429,285 patients that have influenza or related symptoms during an outpatient or emergency room visit, to predict their risk of hospitalization with pneumonia during the following 0 to 30 days. In total we validated the model across a network of 14 databases spanning the US, Europe, Australia and Asia. FindingsThe internal validation performance of the C-19 index was a c-statistic of 0.73 and calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data the model obtained c-statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US and South Korean datasets respectively. The calibration was poor with the model under-estimating risk. When validated on 12 datasets containing influenza patients across the OHDSI network the c-statistics ranged between 0.40-0.68. InterpretationThe results show that the discriminative performance of the C-19 model is low for influenza cohorts, and even worse amongst COVID-19 patients in the US, Spain and South Korea. These results suggest that C-19 should not be used to aid decision making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...