Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(7): 1469-1484, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30626185

RESUMO

The influence of the precursor chemical structure on secondary organic aerosol (SOA) formation was investigated through the study of the ozonolysis of two anthropogenic aromatic alkenes: 2-methylstyrene and indene. Experiments were carried out in three different simulation chambers: ICARE 7300L FEP Teflon chamber (ICARE, Orléans, France), EUPHORE FEP Teflon chamber (CEAM, Valencia, Spain), and CESAM evacuable stainless steel chamber (LISA, Créteil, France). For both precursors, SOA yield and growth were studied on a large range of initial concentrations (from ∼60 ppbv to 1.9 ppmv) and the chemical composition of both gaseous and particulate phases was investigated at a molecular level. Gas phase was described using FTIR spectroscopy and online gas chromatography coupled to mass spectrometry, and particulate chemical composition was analyzed (i) online by thermo-desorption coupled to chemical ionization mass spectrometry and (ii) offline by supercritical fluid extraction coupled to gas chromatography and mass spectrometry. The results obtained from a large set of experiments performed in three different chambers and using several complementary analytical techniques were in very good agreement. SOA yield was up to 10 times higher for indene ozonolysis than for 2-methylstyrene ozonolysis at the same reaction advancement. For 2-methylstyrene ozonolysis, formaldehyde and o-tolualdehyde were the two main gaseous phase products while o-toluic acid was the most abundant among six products detected within the particulate phase. For indene ozonolysis, traces of formic and phthalic acids as well as 11 species were detected in the gaseous phase and 11 other products were quantified in the particulate phase, where phthaldialdehyde was the main product. On the basis of the identified products, reaction mechanisms were proposed that highlight specific pathways due to the precursor chemical structure. These mechanisms were finally compared and discussed regarding SOA formation. In the case of 2-methylstyrene ozonolysis, ozone adds mainly on the external and monosubstituted double bond, yielding only one C8- and monofunctionalized Criegee intermediate and hence more volatile products as well as lower SOA mass than indene ozonolysis in similar experimental conditions. In the case of indene, ozone adds mainly on the five-carbon-ring and disubstituted C═C double bond, leading to the formation of two C9- and bifunctionalized Criegee intermediates, which then evolve via different pathways including the hydroperoxide channel and form highly condensable first-generation products.

2.
J Environ Sci (China) ; 40: 105-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26969550

RESUMO

NitroMAC (French acronym for continuous atmospheric measurements of nitrogenous compounds) is an instrument which has been developed for the semi-continuous measurement of atmospheric nitrous acid (HONO). This instrument relies on wet chemical sampling and detection using high performance liquid chromatography (HPLC)-visible absorption at 540 nm. Sampling proceeds by dissolution of gaseous HONO in a phosphate buffer solution followed by derivatization with sulfanilamide/N-(1-naphthyl)-ethylenediamine. The performance of this instrument was found to be as follows: a detection limit of around 3 ppt with measurement uncertainty of 10% over an analysis time of 10 min. Intercomparison was made between the instrument and a long-path absorption photometer (LOPAP) during two experiments in different environments. First, air was sampled in a smog chamber with concentrations up to 18 ppb of nitrous acid. NitroMAC and LOPAP measurements showed very good agreement. Then, in a second experiment, ambient air with HONO concentrations below 250 ppt was sampled. While NitroMAC showed its capability of measuring HONO in moderate and highly polluted environments, the intercomparison results in ambient air highlighted that corrections must be made for minor interferences when low concentrations are measured.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Ácido Nitroso/análise , Atmosfera , Desenho de Equipamento , França , Limite de Detecção , Fotometria/instrumentação , Fotometria/métodos
3.
Environ Sci Technol ; 47(7): 3182-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23448614

RESUMO

The atmospheric oxidation of benzyl alcohol has been investigated using smog chambers at ICARE, FORD, and EUPHORE. The rate coefficient for reaction with OH radicals was measured and an upper limit for the reaction with ozone was established; kOH = (2.8 ± 0.4) × 10(-11) at 297 ± 3 K (averaged value including results from Harrison and Wells) and kO(3) < 2 × 10(-19) cm(3) molecule(-1) s(-1) at 299 K. The products of the OH radical initiated oxidation of benzyl alcohol in the presence of NOX were studied. Benzaldehyde, originating from H-abstraction from the -CH(2)OH group, was identified using in situ FTIR spectroscopy, HPLC-UV/FID, and GC-PID and quantified in a yield of (24 ± 5) %. Ring retaining products originating from OH-addition to the aromatic ring such as o-hydroxybenzylalcohol and o-dihydroxybenzene as well as ring-cleavage products such as glyoxal were also identified and quantified with molar yields of (22 ± 2)%, (10 ± 3)%, and (2.7 ± 0.7)%, respectively. Formaldehyde was observed with a molar yield of (27 ± 10)%. The results are discussed with respect to previous studies and the atmospheric oxidation mechanism of benzyl alcohol.


Assuntos
Atmosfera/química , Álcool Benzílico/química , Radical Hidroxila/química , Benzaldeídos/química , Etilenos/química , Cinética , Oxirredução , Ozônio/química , Espectroscopia de Infravermelho com Transformada de Fourier
4.
J Am Chem Soc ; 132(24): 8234-5, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-20509648

RESUMO

The nitrogen oxides (NO(x)) decomposition on illuminated TiO(2) surfaces has been widely studied, but little is known about the subsequent formation of non-nitrogen containing products. In this study, TiO(2) coated glass surfaces and TiO(2) films with nitrate anions (either premixed with TiO(2) as KNO(3) or deposited from gaseous NO(x)) are irradiated with broad-band light. Upon irradiation, detected gas phase products include NO(2), HNO(2), and O(3). To the best of our knowledge, this is the first study that reveals the production of O(3) from TiO(2) surfaces. By surface charge transfer reactions, nitrate anions are oxidized into nitrate radicals and their photochemistry (almost in the visible) leads to O(3) formation, enhancing the oxidizing power of these surfaces.

5.
Anal Chim Acta ; 605(1): 61-9, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18022412

RESUMO

The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF3/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L(-1). Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...