Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(29)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35439738

RESUMO

Simulation of atomic redistribution in Ge-Sb-Te (GST)-based memory cells during SET/RESET cycling is needed in order to understand GST memory cell failure and to design improved non-volatile memories. However, this type of atomic scale simulations is extremely challenging. In this work, we propose to use a simplified GST system in order to catch the basics of atomic redistribution in Ge-rich GST (GrGST) films using atomistic kinetic Monte Carlo simulations. Comparison between experiments and simulations shows good agreements regarding the influence of Ge excess on GrGST crystallization, as well as concerning the GST growth kinetic in GrGST films, suggesting the crystallized GST ternary compound to be off-stoichiometric. According to the simulation of atomic redistribution in GrGST films during SET/RESET cycling, the film microstructure stabilized during cycling is significantly dependent of the GST ternary phase stoichiometry. The use of amorphous layers exhibiting the GST ternary phase stoichiometry placed at the bottom or at the top of the GrGST layer is shown to be a way of controlling the microstructure evolution of the film during cycling. The significant evolution of the local composition in the amorphous solution during cycling suggests a non-negligible variation of the crystallization temperature with operation time.

2.
Sci Rep ; 11(1): 1780, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469073

RESUMO

Dislocation engineering in crystalline materials is essential when designing materials for a large range of applications. Segregation of additional elements at dislocations is frequently used to modify the influence of dislocations on material properties. Thus, the influence of the dislocation elastic field on impurity segregation is of major interest, as its understanding should lead to engineering solutions that improve the material properties. We report the experimental study of the elastic field influence on atomic segregation in the core and in the area surrounding edge dislocations in Fe-based alloys. Each element is found either to segregate in the edge dislocation core or to form atmospheres. The elastic field has a strong effect on the segregation atmosphere, but no effect on the dislocation core segregation. The theory is in good agreement with experiments, and should support dislocation engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...