Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Food ; 3(6): 404-405, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118036
2.
Sci Total Environ ; 799: 149505, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371416

RESUMO

The regular drought episodes in South Africa highlight the need to reduce drought risk by both policy and local community actions. Environmental and socioeconomic factors in South Africa's agricultural system have been affected by drought in the past, creating cascading pressures on the nation's agro-economic and water supply systems. Therefore, understanding the key drivers of all risk components through a comprehensive risk assessment must be undertaken in order to inform proactive drought risk management. This paper presents, for the first time, a national drought risk assessment for irrigated and rainfed systems, that takes into account the complex interaction between different risk components. We use modeling and remote sensing approaches and involve national experts in selecting vulnerability indicators and providing information on human and natural drivers. Our results show that all municipalities have been affected by drought in the last 30 years. The years 1981-1982, 1992, 2016 and 2018 were marked as the driest years during the study period (1981-2018) compared to the reference period (1986-2015). In general, the irrigated systems are remarkably less often affected by drought than rainfed systems; however, most farmers on irrigated land are smallholders for whom drought impacts can be significant. The drought risk of rainfed agricultural systems is exceptionally high in the north, central and west of the country, while for irrigated systems, there are more separate high-risk hotspots across the country. The vulnerability assessment identified potential entry points for disaster risk reduction at the local municipality level, such as increasing environmental awareness, reducing land degradation and increasing total dam and irrigation capacity.


Assuntos
Agricultura , Desastres , Secas , Gestão de Riscos , África do Sul
3.
Glob Chang Biol ; 25(1): 155-173, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30549200

RESUMO

Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO2 concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO2 . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO2 and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.


Assuntos
Adaptação Fisiológica , Mudança Climática , Proteínas de Grãos/análise , Triticum/química , Triticum/fisiologia , Dióxido de Carbono/metabolismo , Secas , Qualidade dos Alimentos , Modelos Teóricos , Nitrogênio/metabolismo , Temperatura
4.
Glob Chang Biol ; 25(4): 1428-1444, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30536680

RESUMO

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under way, in accordance with the 2015 Paris Agreement. However, most impact research on agriculture to date has focused on impacts of warming >2°C on mean crop yields, and many previous studies did not focus sufficiently on extreme events and yield interannual variability. Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris Agreement range of global warming (1.5 and 2.0°C warming above the pre-industrial period) on global wheat production and local yield variability. A multi-crop and multi-climate model ensemble over a global network of sites developed by the Agricultural Model Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major rainfed and irrigated wheat cropping systems. Results show that projected global wheat production will change by -2.3% to 7.0% under the 1.5°C scenario and -2.4% to 10.5% under the 2.0°C scenario, compared to a baseline of 1980-2010, when considering changes in local temperature, rainfall, and global atmospheric CO2 concentration, but no changes in management or wheat cultivars. The projected impact on wheat production varies spatially; a larger increase is projected for temperate high rainfall regions than for moderate hot low rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced than in cooler regions. Despite mostly positive impacts on global average grain yields, the frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield inter-annual variability will increase under both warming scenarios for some of the hot growing locations, including locations from the second largest global wheat producer-India, which supplies more than 14% of global wheat. The projected global impact of warming <2°C on wheat production is therefore not evenly distributed and will affect regional food security across the globe as well as food prices and trade.

5.
Glob Chang Biol ; 24(11): 5072-5083, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30055118

RESUMO

A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.


Assuntos
Agricultura , Mudança Climática , Modelos Teóricos , Agricultura/métodos , Meio Ambiente , Triticum
6.
Nat Plants ; 3: 17102, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714956

RESUMO

Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.


Assuntos
Agricultura , Produtos Agrícolas/crescimento & desenvolvimento , Temperatura , Simulação por Computador , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...