Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(7): 2061-2069, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36510429

RESUMO

Sweet potato virus disease (SPVD) is a global constraint to sweetpotato (Ipomoea batatas) production, especially under intensive cultivation in the humid tropics such as East Africa. The objectives of this study were to develop a precision SPVD phenotyping protocol, to find new SPVD-resistant genotypes, and to standardize the first stages of screening for SPVD resistance. The first part of the protocol was based on enzyme-linked immunosorbent assay results for sweet potato chlorotic stunt virus (SPCSV) and sweet potato virus C (SPVC) with adjustments to a negative control (uninfected clone Tanzania) and was performed on a prebreeding population (VZ08) comprising 455 clones and 27 check clones graft inoculated under screenhouse conditions. The second part included field studies with 52 selected clones for SPCSV resistance from VZ08 and 8 checks. In screenhouse conditions, the resistant and susceptible check clones performed as expected; 63 clones from VZ08 exhibited lower relative absorbance values for SPCSV and SPVC than inoculated check Tanzania. Field experiments confirmed SPVD resistance of several clones selected by relative absorbance values (nine resistant clones in two locations; that is, 17.3% of the screenhouse selection), supporting the reliability of our method for SPVD-resistance selection. Two clones were promising, exhibiting high storage root yields of 28.7 to 34.9 t ha-1 and SPVD resistance, based on the proposed selection procedure. This modified serological analysis for SPVD-resistance phenotyping might lead to more efficient development of resistant varieties by reducing costs and time at early stages, and provide solid data for marker-assisted selection with a quantitative tool for classifying resistance.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ipomoea batatas , Potyvirus , Viroses , Viroses/classificação , Ipomoea batatas/virologia , Potyvirus/classificação , Potyvirus/genética , Tanzânia , Resistência à Doença
2.
Plants (Basel) ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36432822

RESUMO

Cytoplasmic male sterility (CMS) in potato is a common reproductive issue in late blight breeding programs since resistant sources usually have a wild cytoplasmic background (W or D). Nevertheless, in each breeding cycle male fertile lines have been observed within D- and T-type cytoplasms, indicating the presence of a fertility restorer (Rf) mechanism. Identifying sources of Rf and complete male sterility to implement a CMS-Rf system in potato is important since hybrid breeding is a feasible breeding strategy for potato. The objective of this study was to identify male fertile breeding lines and potential Rf candidate lines in the CIP late blight breeding pipeline. We characterized male fertility/sterility-related traits on 142 breeding lines of known cytoplasmic type. We found that pollen viability is not a reliable estimate of male sterility in diverse backgrounds. Breeding lines of the T-type cytoplasmic group had higher levels of male fertility than breeding lines of the D-type cytoplasmic group. With the help of pedigree records, reproductive traits evaluations and test crosses with female clones of diverse background, we identified four male parental lines segregating for Rf and three female parental lines that generated 100% male sterile progeny. These identified lines and generated test cross progenies will be valuable to develop validation populations for mitochondrial or nuclear markers for the CMS trait and for dihaploid generation of Rf+ lines that can be later employed in diploid hybrid breeding.

3.
Front Plant Sci ; 13: 793904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557716

RESUMO

Sweetpotato is a highly heterozygous hybrid, and populations of orange-fleshed sweetpotato (OFSP) have a considerable importance for food security and health. The objectives were to estimate heterosis increments and response to selection in three OFSP hybrid populations (H1) developed in Peru for different product profiles after one reciprocal recurrent selection cycle, namely, H1 for wide adaptation and earliness (O-WAE), H1 for no sweetness after cooking (O-NSSP), and H1 for high iron (O-HIFE). The H1 populations were evaluated at two contrasting locations together with parents, foundation (parents in H0), and two widely adapted checks. Additionally, O-WAE was tested under two environmental conditions of 90-day and a normal 120-day harvest. In each H1, the yield and selected quality traits were recorded. The data were analyzed using linear mixed models. The storage root yield traits exhibited population average heterosis increments of up to 43.5%. The quality traits examined have exhibited no heterosis increments that are worth exploiting. The storage root yield genetic gain relative to the foundation was remarkable: 118.8% for H1-O-WAE for early harvest time, 81.5% for H1-O-WAE for normal harvest time, 132.4% for H1-O-NSSP, and 97.1% for H1-O-HIFE. Population hybrid breeding is a tool to achieve large genetic gains in sweetpotato yield via more efficient population improvement and allows a rapid dissemination of globally true seed that is generated from reproducible elite crosses, thus, avoiding costly and time-consuming virus cleaning of elite clones typically transferred as vegetative plantlets. The population hybrid breeding approach is probably applicable to other clonally propagated crops, where potential for true seed production exists.

4.
Plants (Basel) ; 9(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585962

RESUMO

Crop efficiencies associated with intercepted radiation, conversion into biomass and allocation to edible organs are essential for yield improvement strategies that would enhance genetic properties to maximize carbon gain without increasing crop inputs. The production of 20 potato landraces-never studied before-was analyzed for radiation interception ( ε i ), conversion ( ε c ) and partitioning ( ε p ) efficiencies. Additionally, other physiological traits related to senescence delay (normalized difference vegetation index (NDVI) s l p ), tuberization precocity ( t u ), photosynthetic performance and dry tuber yield per plant (TY) were also assessed. Vegetation reflectance was remotely acquired and the efficiencies estimated through a process-based model parameterized by a time-series of airborne imageries. The combination of ε i and ε c , closely associated with an early tuber maturity and a NDVI s l p explained 39% of the variability grouping the most productive genotypes. TY was closely correlated to senescence delay (r P e a r s o n = 0.74), indicating the usefulness of remote sensing methods for potato yield diversity characterization. About 89% of TY was explained by the first three principal components, associated mainly to t u , ε c and ε i , respectively. When comparing potato with other major crops, its ε p is very close to the theoretical maximum. These findings suggest that there is room for improving ε i and ε c to enhance potato production.

5.
Crop Sci ; 60(1): 50-61, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214431

RESUMO

The current study was aimed at identifying mega-environments in Ghana and evaluating adaptability of superior sweetpotato [Ipomoea batatas (L.) Lam.] genotypes from a targeted breeding effort. Three sets of genotypes were evaluated in multi-environment trials (MET). Twelve sweetpotato varieties were evaluated across nine environments representing the main agro-ecological zones in Ghana. MET analysis was conducted using a stage-wise approach with the genotype × environment (G × E) table of means used as a starting point to model the G × E interaction for sweetpotato yield. Emphasis was given to the genetic correlation matrix used in a second-order factor analytic model that accommodates heterogeneity of genetic variances across environments. A genotype main effect and G × E interaction of storage root yield explained 82% of the variation in the first principal component, and visualized the genetic variances and discriminating power of each environment and the genetic correlation between the environments. Two mega-environments, corresponding to northern and southern trial sites, were delineated. Six breeding lines selected from the south and eight breeding lines selected from the north were tested and compared to two common check clones at five locations in Ghana. A Finlay-Wilkinson stability analysis resulted in stable performances within the target mega-environment from which the genotypes were selected, but predominantly without adaptation to the other region. Our results provide a strong rationale for running separate programs to allow for faster genetic progress in each of these two major West African mega-environments by selecting for specific and broad adaptation.

6.
J Agric Sci (Tor) ; 11(17)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33381245

RESUMO

Sweetpotato is an important crop in many parts of the world especially in developing countries. It is used for both human consumption as well as livestock feed. It is an important source of carbohydrates, vitamin C, fibre, iron, potassium, protein and ß-carotene. Its production is, however, constrained by several biotic and abiotic factors, including pests and diseases, low soil fertility, drought, cold and salinity. Breeding is one of the ways to overcome some of these constraints and in sweetpotato the polycross or controlled cross methods can be used. To determine which of the two methods was more efficient, genotypes generated by both methods were evaluated over two seasons at Namulonge and Kachwekano. The type of cross (polycross or controlled) was significantly (P ≤ 0.05) different for storage root yield, response to sweetpotato virus disease, Alternaria blight, and harvest index (HI). The controlled cross families had a significantly higher mean HI of 43.2% than the polycross families with a mean HI of 31.8%. Therefore, controlled crosses could be deployed to systematically increase the HI in sweetpotato breeding populations. Significant (P ≤ 0.05) differences were observed among families for all traits. This stresses that the parents used in a cross are very important in generating genotypes with desired attributes. It was apparent that both the polycross and controlled crosses are good methods for generating new sweetpotato genotypes in a sweetpotato breeding program. Where aggregate performance was considered (selection index) the controlled crosses method produced more (75% of the top 20 desirable genotypes) than the polycross method across the two sites. However, the best three genotypes over the two sites were from the polycross family of Ejumula. Therefore, sweetpotato controlled crosses could be very useful for population improvement using recurrent selection while polycrosses could be suitable for variety development. Both hybridization methods require cautious selection of parents to match the breeding objectives.

7.
Plant Mol Biol Report ; 33(5): 1286-1298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26339121

RESUMO

Dissection of the genetic architecture of adaptation and abiotic stress-related traits is highly desirable for developing drought-tolerant potatoes and enhancing the resilience of existing cultivars, particularly as agricultural production in rain-fed areas may be reduced by up to 50 % by 2020. The "DMDD" potato progeny was developed at International Potato Center (CIP) by crossing the sequenced double monoploid line DM and a diploid cultivar of the Solanum tuberosum diploid Andigenum Goniocalyx group. Recently, a high-density integrated genetic map based on single nucleotide polymorphism (SNP), diversity array technology (DArT), simple sequence repeats (SSRs), and amplified fragment length polymorphism (AFLP) markers was also made available for this population. Two trials were conducted, in greenhouse and field, for drought tolerance with two treatments each, well-watered and terminal drought, in which watering was suspended 60 days after planting. The DMDD population was evaluated for agro-morphological and physiological traits before and after initiation of stress, at multiple time points. Two dense parental genetic maps were constructed using published genotypic data, and quantitative trait locus (QTL) analysis identified 45 genomic regions associated with nine traits in well-watered and terminal drought treatments and 26 potentially associated with drought stress. In this study, the strong influence of environmental factors besides water shortage on the expression of traits and QTLs reflects the multigenic control of traits related to drought tolerance. This is the first study to our knowledge in potato identifying QTLs for drought-related traits in field and greenhouse trials, giving new insights into genetic architecture of drought-related traits. Many of the QTLs identified have the potential to be used in potato breeding programs for enhanced drought tolerance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...