Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 1(4): 1442-1451, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132593

RESUMO

The space within the interlayer of 2-dimensional (2D) nanosheets provides new and intriguing confined environments for molecular interactions. However, atomic level understanding of the adsorption mechanism of CO2 confined within the interlayer of 2D nanosheets is still limited. Herein, we present a comparative study of the adsorption mechanisms of CO2 confined within graphene-molybdenum disulfide (MoS2) nanosheets using density functional theory (DFT). A comprehensive analysis of CO2 adsorption energies (E AE) at various interlayer spacings of different multilayer structures comprising graphene/graphene (GrapheneB) and MoS2/MoS2 (MoS2B) bilayers as well as graphene/MoS2 (GMoS2) and MoS2/graphene (MoS2G) hybrids is performed to obtain the most stable adsorption configurations. It was found that 7.5 Å and 8.5 Å interlayer spacings are the most stable conformations for CO2 adsorption on the bilayer and hybrid structures, respectively. Adsorption energies of the multilayer structures decreased in the following trend: MoS2B > GrapheneB > MoS2G > GMoS2. By incorporating van der Waals (vdW) interactions between the CO2 molecule and the surfaces, we find that CO2 binds more strongly on these multilayer structures. Furthermore, there is a slight discrepancy in the binding energies of CO2 adsorption on the heterostructures (GMoS2, MoS2G) due to the modality of the atom arrangement (C-Mo-S-O and Mo-S-O-C) in both structures, indicating that conformational anisotropy determines to a certain degree its CO2 adsorption energy. Meanwhile, Bader charge analysis shows that the interaction between CO2 and these surfaces causes charge transfer and redistributions. By contrast, the density of states (DOS) plots show that CO2 physisorption does not have a substantial effect on the electronic properties of graphene and MoS2. In summary, the results obtained in this study could serve as useful guidance in the preparation of graphene-MoS2 nanosheets for the improved adsorption efficiency of CO2.

2.
Ultrason Sonochem ; 42: 48-56, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429694

RESUMO

The thermal characteristics of Cu-based catalysts for CO2 utilization towards the synthesis of methanol were analysed and discussed in this study. The preparation process were varied by adopting ultrasonic irradiation at various impulses for the co-precipitation route and also, by introducing ZnO promoters using the solid-state reaction route. Prepared catalysts were characterised using XRD, TPR, TPD, SEM, BET and TG-DTA-DSC. In addition, the CO2 conversion and CH3OH selectivity of these samples were assessed. Calcination of the catalysts facilitated the interaction of the Cu catalyst with the respective support bolstering the thermal stability of the catalysts. The characterisation analysis clearly reveals that the thermal performance of the catalysts was directly related to the sonication impulse and heating rate. Surface morphology and chemistry was enhanced with the aid of sonication and introduction of promoters. However, the impact of the promoter outweighs that of the sonication process. CO2 conversion and methanol selectivity showed a significant improvement with a 270% increase in methanol yield.

3.
Ultrason Sonochem ; 40(Pt A): 341-352, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28946433

RESUMO

Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m2/g) from 25 to 171m2/g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH- groups) basic sites with subsequent surge in the number of strong basic sites (O2-) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine modification and by chemisorption after the modification process.

4.
Ultrason Sonochem ; 39: 330-343, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732953

RESUMO

To improve CO2 adsorption, amine modified Layered double hydroxide (LDH) were prepared via a two stage process, SDS/APTS intercalation was supported by ultrasonic irradiation and then followed by MEA extraction. The prepared samples were characterised using Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The characterisation results were compared with those obtained using the conventional preparation method with consideration to the effect of sonochemical functionalization on textural properties, adsorption capacity, regeneration and lifetime of the LDH adsorbent. It is found that LDHs prepared by sonochemical modification had improved pore structure and CO2 adsorption capacity, depending on sonic intensity. This is attributed to the enhanced deprotonation of activated amino functional groups via the sonochemical process. Subsequently, this improved the amine loading and effective amine efficiency by 60% of the conventional. In addition, the sonochemical process improved the thermal stability of the adsorbent and also, reduced the irreversible CO2 uptake, CUirrev, from 0.18mmol/g to 0.03mmol/g. Subsequently, improving the lifetime and ease of regenerating the adsorbent respectively. This is authenticated by subjecting the prepared adsorbents to series of thermal swing adsorption (TSA) cycles until its adsorption capacity goes below 60% of the original CO2 uptake. While the conventional adsorbent underwent a 10 TSA cycles before breaking down, the sonochemically functionalized LDH went further than 30 TSA cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...