Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 9(8)2017.
Artigo em Inglês | MEDLINE | ID: mdl-30034862

RESUMO

Shape memory polymers can be programmed into a secondary geometry and recovered to their primary geometry with the application of a controlled stimulus. Porous shape memory polymer foam scaffolds that respond to body temperature show particular promise for embolic medical applications. A limitation for the minimally invasive delivery of these materials is an inherent lack of X-ray contrast. In this work, a triiodobenzene containing a monomer was incorporated into a shape memory polymer foam material system to chemically impart X-ray visibility and increase material toughness. Composition and process changes enabled further control over material density and thermomechanical properties. The proposed material system demonstrates a wide range of tailorable functional properties for the design of embolic medical devices, including X-ray visibility, expansion rate, and porosity. Enhanced visualization of these materials can improve the acute performance of medical devices used to treat vascular malformations, and the material porosity provides a healing scaffold for durable occlusion.

2.
Macromol Rapid Commun ; 37(23): 1945-1951, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27568830

RESUMO

Polyurethane shape memory polymer (SMP) foams are proposed for use as thrombogenic scaffolds to improve the treatment of vascular defects, such as cerebral aneurysms. However, gas blown SMP foams inherently have membranes between pores, which can limit their performance as embolic tissue scaffolds. Reticulation, or the removal of membranes between adjacent foam pores, is advantageous for improving device performance by increasing blood permeability and cellular infiltration. This work characterizes the effects of cold gas plasma reticulation processes on bulk polyurethane SMP films and foams. Plasma-induced changes on material properties are characterized using scanning electron microscopy, uniaxial tensile testing, goniometry, and free strain recovery experiments. Device specific performance is characterized in terms of permeability, platelet attachment, and cell-material interactions. Overall, plasma reticulated SMP scaffolds show promise as embolic tissue scaffolds due to increased bulk permeability, retained thrombogenicity, and favorable cell-material interactions.


Assuntos
Aneurisma Intracraniano/patologia , Gases em Plasma/química , Poliuretanos/química , Alicerces Teciduais/química , Animais , Células Cultivadas , Camundongos , Células NIH 3T3 , Tamanho da Partícula , Gases em Plasma/síntese química , Poliuretanos/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...