Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39058126

RESUMO

Potentially toxic elements (PTEs) pose a significant threat to the groundwater system and human health. Pollution and the potential risks of PTEs in groundwater in the Kǒnqi River Basin (KRB) of the northwest arid zones of China are still unknown. A total of 53 groundwater samples containing eight PTEs (Al, As, Cd, Cu, Mn, Pb, Se, and Zn) were collected from the KRB, and the pollution levels and probabilistic health risks caused by PTEs were assessed based on the Nemerow Index (NI) method and the health risk assessment model. The results revealed that the mean contents of Al, As, and Mn in the groundwater surpassed the Class III threshold of the Standard for Groundwater Quality of China. The overall pollution levels of the investigated PTEs in the groundwater fall into the moderate pollution level. The spatial distributions of contents and pollution levels of different PTEs in the groundwater were different. Health risk assessment indicated that all the investigated PTEs in groundwater in the KRB may pose a probabilistic non-carcinogenic health risk for both adults and children. Moreover, As may pose a non-carcinogenic health risk, whereas the non-carcinogenic health risk posed by the other seven PTEs in groundwater will not have the non-carcinogenic risks. Furthermore, As falls into the low carcinogenic risk level, whereas Cd falls into the very low carcinogenic risk level. Overall, As was confirmed as the dominant pollution factor and health risk factor of groundwater in the KRB. Results of this study provide the scientific basis needed for the prevention and control of PTE pollution in groundwater.

2.
Toxics ; 12(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39058140

RESUMO

Heavy metal(loid) (HM) contamination is a significant threat to wetland ecosystem. However, contamination risks of HMs in overlying water of small wetlands, which are easily ignored because of their minor occupancy in an overall area, are nearly unknown. A total of 36 water samples containing six HMs were collected from the urban and rural small wetlands of Urumqi in China, and the contamination levels and probabilistic health risks caused by HMs were assessed using the Nemerow pollution index (NPI) and the health risk assessment model introduced by the US EPA. The results revealed that the average concentration of Hg in the urban and rural small wetlands surpassed the Class II thresholds of the Environmental Quality Standards for Surface Water (GB 3838-2002) by factors of 3.2 and 5.0 times, respectively. The overall contamination levels of HMs in the small wetlands fall into the high contamination level. Results of a health risk assessment indicated that non-carcinogenic health risk of the investigated HMs are found to be lower than the acceptable range for adults, but higher than the acceptable range for children. Meanwhile, As falls into the low carcinogenic risk level, whereas Cd falls into the very low carcinogenic risk level. Overall, HMs in rural small wetlands showed relatively higher contamination levels and probabilistic health risks than that of urban small wetlands. In addition, As was identified as the dominant health risk factor in the overlying water of small wetlands in the study area. Findings of this study provide scientific support needed for the prevention of HM contamination of small wetlands in arid zones.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36833543

RESUMO

Accurately capturing the changing patterns of ecological quality in the urban agglomeration on the northern slopes of the Tianshan Mountains (UANSTM) and researching its significant impacts responds to the requirements of high-quality sustainable urban development. In this study, the spatial and temporal distribution patterns of remote sensing ecological index (RSEI) were obtained by normalization and PCA transformation of four basic indicators based on Landsat images. It then employed geographic detectors to analyze the factors that influence ecological change. The result demonstrates that: (1) In the distribution of land use conversions and degrees of human disturbance, built-up land, principally urban land, and agricultural land, represented by dry land, are rising, while the shrinkage of grassland is the most substantial. The degree of human disturbance is increasing overall for glaciers. (2) The overall ecological environment of the northern slopes of Tianshan is relatively poor. Temporally, the ecological quality changes and fluctuates, with an overall rising trend. Spatially, ecological quality is low in the north and south and high in the center, with high values concentrated in the mountains and agriculture and low values in the Gobi and desert. However, on a large scale, the ecological quality of the Urumqi-Changji-Shihezi metropolitan area has worsened dramatically compared to other regions. (3) Driving factor detection showed that LST and NDVI were the most critical influencing factors, with an upward trend in the influence of WET. Typically, LST has the biggest influence on RSEI when interacting with NDVI. In terms of the broader region, the influence of social factors is smaller, but the role of human interference in the built-up area of the oasis city can be found to be more significant at large scales. The study shows that it is necessary to strengthen ecological conservation efforts in the UANSTM region, focusing on the impact of urban and agricultural land expansion on surface temperature and vegetation.


Assuntos
Meio Ambiente , Monitoramento Ambiental , Humanos , Cidades , China , Tecnologia de Sensoriamento Remoto , Ecossistema
4.
Artigo em Inglês | MEDLINE | ID: mdl-36293878

RESUMO

High concentrations of heavy metals (HMs) in urban surface dust (USD) can be extremely hazardous to urban ecology and human health. Oasis cities are located at the edge of deserts and are more exposed to salt/sandstorms, and they face a significantly higher accumulation of USD than wet or semi-humid areas. However, systematic studies on the pollution and risk assessment of HMs in USD in oasis cities have rarely been conducted. This study systematically analyzed the enrichment status, spatial distribution, pollution levels, health risks, and sources of HMs in USD in a typical oasis city (Changji city). The results showed that the average concentrations of Pb, Ni, As, Cd, Hg, and Cu in the USD of Changji city were 46.83, 26.35, 9.92, 0.21, 0.047, and 59.33 mg/kg, respectively, and the results of the pollution index evaluation showed moderate Pb, Hg, and Cu pollution, mild Cd pollution, and no Ni or As pollution. The spatial distribution of HM concentrations in the USD was substantially heterogeneous. High values of Pb, Hg, and Cu concentrations were mainly observed in areas with relatively intensive transportation and commercial activities, and high values of Cd and Ni were observed in industrial areas. The health risk assessment showed that HMs do not pose non-carcinogenic risks to humans at their current level, but they pose a carcinogenic risk to children, with As contributing the largest carcinogenic and non-carcinogenic risks. The source identification of HMs showed that the main pollution of HMs were traffic sources for Pb and Cu, industrial sources for Ni and Cd, natural sources for As, and coal-fired sources for Hg. According to the results of the quantitative analysis with the positive matrix factorization, the contribution of pollution sources followed this order: industrial sources (31.08%) > traffic sources (26.80%) > coal-fired sources (23.31%) > natural sources (18.81%).


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Criança , Humanos , Poeira/análise , Poluentes do Solo/análise , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Cidades , Mercúrio/análise , China , Carvão Mineral/análise , Monitoramento Ambiental
5.
Sci Total Environ ; 493: 1098-111, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24953685

RESUMO

A total of 469 surface soil samples were collected from the Yanqi basin in northwest China and evaluated for levels of ten heavy metals. Multivariate statistical analyses were used to study sources of and map the spatial distribution of heavy metals, as well as determine the relationship between land use types and soil source materials. It was found that: (1) the average amounts of ten heavy metals in the Yanqi basin were all below the national soil environmental quality standards of China (GB15618-1998), but the average amount of Cd, Hg, Mn, Ni, Pb, and Zn all exceeded the heavy metal background levels of soil in Xinjiang, China and exhibited accumulation. The ten heavy metals analyzed in this study can be categorized into four principal components as follows: Principal component 1 was Co, Cr, Mn, Ni, and Zn, and principal component 3 was As and Cu. Both of these originated from a natural geological background. Principal component 2 consisted of Cd and Pb and originated from industrial, agricultural and transportation influences. Principal component 4 consisted of Hg and was due to industrial influences. Our study found that Pb and Zn were a large part in the principal components 1 and 3 and were influenced by a combination of geologic background and human activity. (2) Heavy metals Cd and Hg were at high levels in construction land and farmland, while Co, Cr, Cu, Mn, and Ni were significantly higher in lacustrine deposits than in sandy shale from weathered material, coarse crystalline rock weathered material, and diluvial material. The land use types correlated significantly with the accumulation of Cd and Hg, and the soil parent material was the major factor for the accumulation of As, Co, Cr, Cu, Mn, and Ni. (3) The single element, element integration and the corresponding principal component presented similar spatial patterns of hazardous risk. Following comprehensive assessment of all elements, the high risk regions were found to be located in densely-populated urban areas and western parts of the study area. This was attributed to the higher geological background in the western part and strong human influence in the central part. Research shows that Cd, Hg, Pb, and Zn were locally enriched in the basin and this warrants increased attention.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Agricultura , China , Indústrias , Análise Multivariada , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA