Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Transl Med ; 22(1): 534, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835045

RESUMO

BACKGROUND: Macrophages are involved in tissue homeostasis, angiogenesis and immunomodulation. Proangiogenic and anti-inflammatory macrophages (regulatory macrophages, Mreg) can be differentiated in-vitro from CD14+ monocytes by using a defined cell culture medium and a stimulus of IFNγ. AIM OF THE STUDY: To scrutinize the potential impact of temporal IFNγ exposure on macrophage differentiation as such exposure may lead to the emergence of a distinct and novel macrophage subtype. METHODS: Differentiation of human CD14+ monocytes to Mreg was performed using a GMP compliant protocol and administration of IFNγ on day 6. Monocytes from the same donor were in parallel differentiated to MregIFNγ0 using the identical protocol but with administration of IFNγ on day 0. Cell characterization was performed using brightfield microscopy, automated and metabolic cell analysis, transmission electron microscopy, flow cytometry, qPCR and secretome profiling. RESULTS: Mreg and MregIFNγ0 showed no differences in cell size and volume. However, phenotypically MregIFNγ0 exhibited fewer intracellular vesicles/vacuoles but larger pseudopodia-like extensions. MregIFNγ0 revealed reduced expression of IDO and PD-L1 (P < 0.01 for both). They were positive for CD80, CD14, CD16 and CD38 (P < 0.0001vs. Mreg for all), while the majority of MregIFNγ0 did not express CD206, CD56, and CD103 on their cell surface (P < 0.01 vs. Mreg for all). In terms of their secretomes, MregIFNγ0 differed significantly from Mreg. MregIFNγ0 media exhibited reduced levels of ENA-78, Osteopontin and Serpin E1, while the amounts of MIG (CXCL9) and IP10 were increased. CONCLUSION: Exposing CD14+ monocytes to an alternatively timed IFNγ stimulation results in a novel macrophage subtype which possess additional M1-like features (MregIFNγ0). MregIFNγ0 may therefore have the potential to serve as cellular therapeutics for clinical applications beyond those covered by M2-like Mreg, including immunomodulation and tumor treatment.


Assuntos
Diferenciação Celular , Interferon gama , Macrófagos , Fenótipo , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Fatores de Tempo , Receptores de Lipopolissacarídeos/metabolismo
2.
J Mol Med (Berl) ; 101(11): 1437-1448, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37725101

RESUMO

Macrophages belong to the innate immune system, and we have recently shown that in vitro differentiated human regulatory macrophages (Mreg) release large extracellular vesicles (L-EVMreg) with an average size of 7.5 µm which regulate wound healing and angiogenesis in vitro. The aim of this study was to investigate whether L-EVMreg also affect the CD3/CD28-mediated activation of T-cells. Mreg were differentiated using blood monocytes and L-EVMreg were isolated from culture supernatants by differential centrifugation. Activation of human T-cells was induced by CD3/CD28-coated beads in the absence or presence of Mreg or different concentrations of L-EVMreg. Inhibition of T-cell activation was quantified by flow cytometry and antibodies directed against the T-cell marker granzyme B. Phosphatidylserine (PS) exposure on the surface of Mreg and L-EVMreg was analyzed by fluorescence microscopy. Incubation of human lymphocytes with CD3/CD28 beads resulted in an increase of cell size, cell granularity, and number of granzyme B-positive cells (P < 0.05) which is indicative of T-cell activation. The presence of Mreg (0.5 × 106 Mreg/ml) led to a reduction of T-cell activation (number of granzyme B-positive cells; P < 0.001), and a similar but less pronounced effect was also observed when incubating activated T-cells with L-EVMreg (P < 0.05 for 3.2 × 106 L-EVMreg/ml). A differential analysis of the effects of Mreg and L-EVMreg on CD4+ and CD8+ T-cells showed an inhibition of CD4+ T-cells by Mreg (P < 0.01) and L-EVMreg (P < 0.05 for 1.6 × 106 L-EVMreg/ml; P < 0.01 for 3.2 × 106 L-EVMreg/ml). A moderate inhibition of CD8+ T-cells was observed by Mreg (P < 0.05) and by L-EVMreg (P < 0.01 for 1.6 × 106 L-EVMreg/ml and 3.2 × 106 L-EVMreg/ml). PS was restricted to confined regions of the Mreg surface, while L-EVMreg showed strong signals for PS in the exoplasmic leaflet. L-EVMreg attenuate CD3/CD28-mediated activation of CD4+ and CD8+ T-cells. L-EVMreg may have clinical relevance, particularly in the treatment of diseases associated with increased T-cell activity. KEY MESSAGES: Mreg release large extracellular vesicles (L-EVMreg) with an average size of 7.5 µm L-EVMreg exhibit phosphatidylserine positivity L-EVMreg suppress CD4+ and CD8+ T-cells L-EVMreg hold clinical potential in T-cell-related diseases.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Humanos , Granzimas/farmacologia , Fosfatidilserinas/farmacologia , Macrófagos , Ativação Linfocitária , Linfócitos T CD4-Positivos
3.
J Transl Med ; 21(1): 61, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717876

RESUMO

BACKGROUND: Large extracellular vesicles (L-EV) with a diameter between 1 and 10 µm are released by various cell types. L-EV contain and transport active molecules which are crucially involved in cell to cell communication. We have shown that secretory products of human regulatory macrophages (Mreg) bear pro-angiogenic potential in-vitro and our recent findings show that Mreg cultures also contain numerous large vesicular structures similar to L-EV with so far unknown characteristics and function. AIM OF THIS STUDY: To characterize the nature of Mreg-derived L-EV (L-EVMreg) and to gain insights into their role in wound healing and angiogenesis. METHODS: Mreg were differentiated using blood monocytes from healthy donors (N = 9) and L-EVMreg were isolated from culture supernatants by differential centrifugation. Characterization of L-EVMreg was performed by cell/vesicle analysis, brightfield/transmission electron microscopy (TEM), flow cytometry and proteome profiling arrays. The impact of L-EVMreg on wound healing and angiogenesis was evaluated by means of scratch and in-vitro tube formation assays. RESULTS: Mreg and L-EVMreg show an average diameter of 13.73 ± 1.33 µm (volume: 1.45 ± 0.44 pl) and 7.47 ± 0.75 µm (volume: 0.22 ± 0.06 pl) respectively. Flow cytometry analyses revealed similarities between Mreg and L-EVMreg regarding their surface marker composition. However, compared to Mreg fewer L-EVMreg were positive for CD31 (P < 0.01), CD206 (P < 0.05), CD103 (P < 0.01) and CD45 (P < 0.05). Proteome profiling suggested that L-EVMreg contain abundant amounts of pro-angiogenic proteins (i.e. interleukin-8, platelet factor 4 and serpin E1). From a functional point of view L-EVMreg positively influenced in-vitro wound healing (P < 0.05) and several pro-angiogenic parameters in tube formation assays (all segment associated parameters, P < 0.05; number of meshes, P < 0.05). CONCLUSION: L-EVMreg with regenerative and pro-angiogenic potential can be reproducibly isolated from in-vitro cultured human regulatory macrophages. We propose that L-EVMreg could represent a putative therapeutic option for the treatment of chronic wounds and ischemia-associated diseases.


Assuntos
Vesículas Extracelulares , Proteoma , Humanos , Proteoma/análise , Cicatrização , Macrófagos , Monócitos
4.
Basic Res Cardiol ; 116(1): 60, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34651218

RESUMO

Remote ischemic preconditioning (RIPC) protects the heart against myocardial ischemia/reperfusion (I/R) injury and recent work also suggested chronic remote ischemic conditioning (cRIPC) for cardiovascular protection. Based on current knowledge that systemic immunomodulatory effects of RIPC and the anti-inflammatory capacity of monocytes might be involved in cardiovascular protection, the aim of our study was to evaluate whether RIPC/cRIPC blood plasma is able to induce in-vitro angiogenesis, identify responsible factors and evaluate the effects of RIPC/cRIPC on cell surface characteristics of circulating monocytes. Eleven healthy volunteers were subjected to RIPC/cRIPC using a blood pressure cuff inflated to > 200 mmHg for 3 × 5 min on the upper arm. Plasma and peripheral blood monocytes were isolated before RIPC (Control), after 1 × RIPC (RIPC) and at the end of 1 week of daily RIPC (cRIPC) treatment. Plasma concentrations of potentially pro-angiogenic humoral factors (CXCL5, Growth hormone, IGFBP3, IL-1α, IL-6, Angiopoietin 2, VEGF, PECAM-1, sTie-2, IL-8, MCSF) were measured using custom made multiplex ELISA systems. Tube formation assays for evaluation of in-vitro angiogenesis were performed with donor plasma, monocyte conditioned culture media as well as IL-1α, CXCL5 and Growth hormone. The presence of CD14, CD16, Tie-2 and CCR2 was analyzed on monocytes by flow cytometry. Employing in-vitro tube formation assays, several parameters of angiogenesis were significantly increased by cRIPC plasma (number of nodes, P < 0.05; number of master junctions, P < 0.05; number of segments, P < 0.05) but were not influenced by culture medium from RIPC/cRIPC treated monocytes. While RIPC/cRIPC treatment did not lead to significant changes of the median plasma concentrations of any of the selected potentially pro-angiogenic humoral factors, in-depth analysis of the individual subjects revealed differences in plasma levels of IL-1α, CXCL5 and Growth hormone after RIPC/cRIPC treatment in some of the volunteers. Nevertheless, the positive effects of RIPC/cRIPC plasma on in-vitro angiogenesis could not be mimicked by the addition of the respective humoral factors alone or in combination. While monocyte conditioned culture media did not affect in-vitro tube formation, flow cytometry analyses of circulating monocytes revealed a significant increase in the number of Tie-2 positive and a decrease of CCR2 positive monocytes after RIPC/cRIPC (Tie-2: cRIPC, P < 0.05; CCR2: RIPC P < 0.01). Cardiovascular protection may be mediated by RIPC and cRIPC via a regulation of plasma cytokines as well as changes in cell surface characteristics of monocytes (e.g. Tie-2). Our results suggest that a combination of humoral and cellular factors could be responsible for the RIPC/cRIPC mediated effects and that interindividual variations seem to play a considerable part in the RIPC/cRIPC associated mechanisms.


Assuntos
Precondicionamento Isquêmico , Monócitos , Citocinas , Humanos , Projetos Piloto , Plasma
5.
Stem Cells Int ; 2019: 3725863, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341483

RESUMO

Ischemia/reperfusion- (I/R-) induced organ damage represents one of the main causes of death worldwide, and new strategies to reduce I/R injury are urgently needed. We have shown that programmable cells of monocytic origin (PCMO) respond to I/R with the release of angiogenic mediators and that transplantation of PCMO results in increased neovascularization. Human regulatory macrophages (Mreg), which are also of monocytic origin, have been successfully employed in clinical transplantation studies due to their immunomodulatory properties. Here, we investigated whether Mreg also possess angiogenic potential in vitro and could represent a treatment option for I/R-associated illnesses. Mreg were differentiated using peripheral blood monocytes from different donors (N = 14) by incubation with M-CSF and human AB serum and stimulation with INF-gamma. Mreg cultures were subjected to 3 h of hypoxia and 24 h of reoxygenation (resembling I/R) or the respective nonischemic control. Cellular resilience, expression of pluripotency markers, secretion of angiogenic proteins, and influence on endothelial tube formation as a surrogate marker for angiogenesis were investigated. Mreg showed resilience against I/R that did not lead to increased cell damage. Mreg express DHRS9 as well as IDO and display a moderate to low expression pattern of several pluripotency genes (e.g., NANOG, OCT-4, and SOX2). I/R resulted in an upregulation of IDO (p < 0.001) while C-MYC and KLF4 were downregulated (p < 0.001 and p < 0.05). Proteome profiling revealed the secretion of numerous angiogenic proteins by Mreg of which several were strongly upregulated by I/R (e.g., MIP-1alpha, 19.9-fold; GM-CSF, 19.2-fold; PTX3, 5.8-fold; IL-1ß, 5.2-fold; and MCP-1, 4.7-fold). The angiogenic potential of supernatants from Mreg subjected to I/R remains inconclusive. While Mreg supernatants from 3 donors induced tube formation, 2 supernatants were not effective. We suggest that Mreg may prove beneficial as a cell therapy-based treatment option for I/R-associated illnesses. However, donor characteristics seem to crucially influence the effectiveness of Mreg treatment.

6.
Stem Cells Int ; 2018: 4271875, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402109

RESUMO

Following a several-day incubation in medium containing IL-3 and M-CSF to generate a more plastic intermediate "reprogrammed multipotent cells of monocytic origin (RMCMO)," peripheral blood mononuclear cells (PBMCs) can be efficiently converted to hepatocyte-like cells (neohepatocytes) and insulin-producing cells. However, continuous efforts are devoted to enhancing the proliferative capacity of these multipotent cells while maintaining or further increasing their redifferentiation potential. In the present work, PBMCs were transfected with one pluripotency gene (SOX2) and the resulting RMCMO compared to standard RMCMO with respect to cell viability, proliferative activity, and redifferentiation potential. Ectopic SOX2 expression increased the number of viable RMCMO, activated cell cycle genes, and enhanced proliferation as shown by quantitative RT-PCR and Ki67 immunofluorescent staining, respectively. Redifferentiation of RMCMO derived from SOX2-transfected PBMCs to neohepatocytes was more complete in comparison to control cells as revealed by higher urea and glucose secretion, increased activity of cytochrome P450 isoforms, and a phase II enzyme, while the same was true for insulin-producing cells as assessed by the expression of INS, PDX1, and GLUT2 and glucose-stimulated insulin secretion. Our results indicate that SOX2 transfection increases both multipotency and proliferation of RMCMO, eventually allowing production of neohepatocytes and insulin-producing cells of higher quality and quantity for transplantation purposes.

7.
Nat Commun ; 9(1): 2858, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030423

RESUMO

Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4+ T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+ FoxP3+-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-ß, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT+ Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs.


Assuntos
Macrófagos/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T Reguladores/imunologia , Aloenxertos , Animais , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto , Humanos , Interleucina-10/metabolismo , Transplante de Rim , Receptores de Lipopolissacarídeos/metabolismo , Camundongos , Fenótipo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transplante Homólogo
8.
J Craniomaxillofac Surg ; 45(9): 1515-1520, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28688862

RESUMO

We have demonstrated previously that peripheral blood monocytes can be converted in vitro to a multipotent stem cell-like cell termed programmable cell of monocytic origin (PCMO) and subsequently into cells with chondrocyte-like phenotype. Here, we investigated whether PCMO could also be differentiated into osteoblast-like cells using growth factors with known osteoinductive potency. Following stimulation with BMP-2, BMP-7, IGF-1 or TGF-ß1 for 7 and 14 days, PCMOs were analyzed for mRNA expression of collagen types I and V, alkaline phosphatase, osteocalcin, runt-related transcription factor-2 (Runx2) and Osterix (Osx) by quantitative RT-PCR (qPCR) and the levels of collagen I in culture supernatants by ELISA. The expression of osteoblastic markers was evident, albeit at a different extent in cultures of PCMOs after treatment with the above-mentioned growth factors. Culture supernatants from PCMOs stimulated for 6-10 days with BMP-2, BMP-7, IGF-1 or TGF-ß1 contained high levels of collagen type I, together with earlier data indicating synthesis and proper secretion. The findings suggest that PCMOs can transform into cells that are phenotypically similar to osteoblasts and identify these cells as osteochondroprogenitors. The possibility of differentiating PCMOs from peripheral blood in sizable quantities could be a novel way to obtain autologous bone-like substitutes without donor-site morbidity.


Assuntos
Monócitos/citologia , Células-Tronco Multipotentes/fisiologia , Osteoblastos , Osteogênese/fisiologia , Células da Medula Óssea/fisiologia , Técnicas de Cultura de Células , Desdiferenciação Celular/fisiologia , Diferenciação Celular/fisiologia , Colágeno Tipo I/análise , Colágeno Tipo I/metabolismo , Humanos , Células-Tronco Multipotentes/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA/isolamento & purificação
9.
Transplantation ; 101(11): 2731-2738, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28594751

RESUMO

BACKGROUND: The human regulatory macrophage (Mreg) has emerged as a promising cell type for use as a cell-based adjunct immunosuppressive therapy in solid organ transplant recipients. In this brief report, dehydrogenase/reductase 9 (DHRS9) is identified as a robust marker of human Mregs. METHODS: The cognate antigen of a mouse monoclonal antibody raised against human Mregs was identified as DHRS9 by immunoprecipitation and MALDI-MS sequencing. Expression of DHRS9 within a panel of monocyte-derived macrophages was investigated by quantitative PCR, immunoblotting and flow cytometry. RESULTS: DHRS9 expression discriminated human Mregs from a panel of in vitro derived macrophages in other polarisation states. Likewise, DHRS9 expression distinguished Mregs from a variety of human monocyte-derived tolerogenic antigen-presenting cells in current development as cell-based immunotherapies, including Tol-DC, Rapa-DC, DC-10, and PGE2-induced myeloid-derived suppressor cells. A subpopulation of DHRS9-expressing human splenic macrophages was identified by immunohistochemistry. Expression of DHRS9 was acquired gradually during in vitro development of human Mregs from CD14 monocytes and was further enhanced by IFN-γ treatment on day 6 of culture. Stimulating Mregs with 100 ng/mL lipopolysaccharide for 24 hours did not extinguish DHRS9 expression. Dhrs9 was not an informative marker of mouse Mregs. CONCLUSION: DHRS9 is a specific and stable marker of human Mregs.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Ativação de Macrófagos , Macrófagos/enzimologia , 3-Hidroxiesteroide Desidrogenases/genética , Animais , Biomarcadores/metabolismo , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Humanos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade da Espécie , Fatores de Tempo
11.
Cell Mol Life Sci ; 73(11-12): 2269-84, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048815

RESUMO

Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death.


Assuntos
Morte Celular/fisiologia , Permeabilidade da Membrana Celular , Membrana Celular/fisiologia , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Animais , Endocitose , Vetores Genéticos/genética , Humanos , Camundongos , Oligonucleotídeos/administração & dosagem , Transporte Proteico/fisiologia , Ratos
12.
Stem Cells Int ; 2016: 7132751, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798361

RESUMO

Adult stem or programmable cells hold great promise in diseases in which damaged or nonfunctional cells need to be replaced. We have recently demonstrated that peripheral blood monocytes can be differentiated in vitro into cells resembling specialized cell types like hepatocytes and pancreatic beta cells. During phenotypic conversion, the monocytes downregulate monocyte/macrophage differentiation markers, being indicative of partial dedifferentiation, and are partially reprogrammed to acquire a state of plasticity along with expression of various markers of pluripotency and resumption of mitosis. Upregulation of stem cell markers and mitotic activity in the cultures was shown to be controlled by autocrine production/secretion of activin A and transforming growth factor-beta (TGF-ß). These reprogrammed monocyte derivatives were termed "programmable cells of monocytic origin" (PCMO). Current efforts focus on establishing culture conditions that increase both the plasticity and proliferation potential of PCMO in order to be able to generate large amounts of blood-derived cells suitable for both autologous and allogeneic therapies.

13.
Transplantation ; 100(1): 116-25, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555945

RESUMO

BACKGROUND: We investigated whether sirolimus-based immunosuppression improves outcomes in liver transplantation (LTx) candidates with hepatocellular carcinoma (HCC). METHODS: In a prospective-randomized open-label international trial, 525 LTx recipients with HCC initially receiving mammalian target of rapamycin inhibitor-free immunosuppression were randomized 4 to 6 weeks after transplantation into a group on mammalian target of rapamycin inhibitor-free immunosuppression (group A: 264 patients) or a group incorporating sirolimus (group B: 261). The primary endpoint was recurrence-free survival (RFS); intention-to-treat (ITT) analysis was conducted after 8 years. Overall survival (OS) was a secondary endpoint. RESULTS: Recurrence-free survival was 64.5% in group A and 70.2% in group B at study end, this difference was not significant (P = 0.28; hazard ratio [HR], 0.84; 95% confidence interval [95% CI], 0.62; 1.15). In a planned analysis of RFS rates at yearly intervals, group B showed better outcomes 3 years after transplantation (HR, 0.7; 95% CI, 0.48-1.00). Similarly, OS (P = 0.21; HR, 0.81; 95% CI, 0.58-1.13) was not statistically better in group B at study end, but yearly analyses showed improvement out to 5 years (HR, 0.7; 95% CI, 0.49-1.00). Interestingly, subgroup (Milan Criteria-based) analyses revealed that low-risk, rather than high-risk, patients benefited most from sirolimus; furthermore, younger recipients (age ≤60) also benefited, as well sirolimus monotherapy patients. Serious adverse event numbers were alike in groups A (860) and B (874). CONCLUSIONS: Sirolimus in LTx recipients with HCC does not improve long-term RFS beyond 5 years. However, a RFS and OS benefit is evident in the first 3 to 5 years, especially in low-risk patients. This trial provides the first high-level evidence base for selecting immunosuppression in LTx recipients with HCC.


Assuntos
Carcinoma Hepatocelular/cirurgia , Imunossupressores/uso terapêutico , Neoplasias Hepáticas/cirurgia , Transplante de Fígado , Sirolimo/uso terapêutico , Adulto , Fatores Etários , Idoso , Austrália , Canadá , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Progressão da Doença , Intervalo Livre de Doença , Quimioterapia Combinada , Europa (Continente) , Feminino , Humanos , Análise de Intenção de Tratamento , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Transplante de Fígado/efeitos adversos , Transplante de Fígado/mortalidade , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
14.
PLoS One ; 10(2): e0118097, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25707005

RESUMO

Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s) and TGF-ß(s), are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TßRII, ALK5 as well as TGF-ß1 and the ßA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-ß1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB) and TGF-ß1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-ß signaling by either SB431542 or anti-TGF-ß antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-ß antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-ß/Smad3 signaling, while relief from growth inhibition is primarily the result of reduced TGF-ß/Smad3, and to a lesser extent, activin/Smad2 signaling.


Assuntos
Ativinas/metabolismo , Comunicação Autócrina/fisiologia , Expressão Gênica/fisiologia , Monócitos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo/fisiologia , Humanos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad3 , Regulação para Cima/fisiologia
15.
Int J Oral Sci ; 7(2): 80-8, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25257881

RESUMO

Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS⁺) and STRO-1-negative (MACS⁻) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS⁺ and MACS⁻ cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS⁺ and MACS(-) cell fractions showed plastic adherence. MACS⁺ cells, in contrast to MACS⁻ cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS⁺ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS⁻ cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS⁺ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS⁻ cells demonstrated slight osteogenic potential. Unstimulated MACS⁺ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS⁻ cells demonstrated higher expression of osteonectin (P<0.05; Mann-Whitney). The present study is the first to compare gingival MACS⁺ and MACS⁻ cell populations demonstrating that MACS⁺ cells, in contrast to MACS⁻ cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS⁺ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS⁺ cells are a unique renewable source of multipotent stem/progenitor cells.


Assuntos
Gengiva/citologia , Separação Imunomagnética/métodos , Sequência de Bases , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Primers do DNA , Perfilação da Expressão Gênica , Gengiva/metabolismo , Humanos , Imunofenotipagem , Reação em Cadeia da Polimerase em Tempo Real
16.
Transfusion ; 54(9): 2336-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24697195

RESUMO

Administering immunoregulatory cells as medicinal agents is a revolutionary approach to the treatment of immunologically mediated diseases. Isolating, propagating, and modifying cells before applying them to patients allows complementation of specific cellular functions, which opens astonishing new possibilities for gain-of-function antigen-specific treatments in autoimmunity, chronic inflammatory disorders, and transplantation. This critical review presents a systematic assessment of the potential clinical risks posed by cell-based immunotherapy, focusing on treatment of renal transplant recipients with regulatory macrophages as a concrete example.


Assuntos
Imunoterapia/métodos , Rejeição de Enxerto , Humanos , Imunossupressores/uso terapêutico , Transplante de Rim
17.
Oncotarget ; 5(1): 277-90, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24378395

RESUMO

Transforming growth factor (TGF)-ß1 promotes progression of pancreatic ductal adenocarcinoma (PDAC) by enhancing epithelial-mesenchymal transition, cell migration/invasion, and metastasis, in part by cooperating with the small GTPase Rac1. Prompted by the observation of higher expression of Rac1b, an alternatively spliced Rac1 isoform, in pancreatic ductal epithelial cells and in patients with chronic pancreatitis vs. PDAC, as well as in long-time vs. short-time survivors among PDAC patients, we asked whether Rac1b might negatively affect TGF-ß1 prometastatic function. Interestingly, the non-malignant pancreatic ductal epithelial cell line H6c7 exhibited a higher ratio of active Rac1b to total Rac1b than the TGF-ß1-responsive PDAC cell lines Panc-1 and Colo357. Notably, siRNA-mediated silencing of Rac1b increased TGF-ß1/Smad-dependent migratory activities in H6c7, Colo357, and Panc-1 cells, while ectopic overexpression of Rac1b in Panc-1 cells attenuated TGF-ß1-induced cell motility. Depletion of Rac1b in Panc-1 cells enhanced TGF-ß1/Smad-dependent expression of promoter-reporter genes and of the endogenous Slug gene. Moreover, Rac1b depletion resulted in a higher and more sustained C-terminal phosphorylation of Smad3 and Smad2, suggesting that Rac1b is involved in Smad2/3 dephosphorylation/inactivation. Since pharmacologic or siRNA-mediated inhibition of Smad3 but not Smad2 was able to alleviate the Rac1b siRNA effect on TGF-ß1-induced cell migration, our results suggests that Rac1b inhibits TGF-ß1-induced cell motility in pancreatic ductal epithelial cells by blocking the function of Smad3. Moreover, Rac1b may act as an endogenous inhibitor of Rac1 in TGF-ß1-mediated migration and possibly metastasis. Hence, it could be exploited for diagnostic/prognostic purposes or even therapeutically in late-stage PDAC as an antimetastatic agent.


Assuntos
Carcinoma Ductal Pancreático/patologia , Movimento Celular/fisiologia , Neoplasias Pancreáticas/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Guanosina Trifosfato/metabolismo , Humanos , Ductos Pancreáticos/citologia , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosforilação , Transdução de Sinais , Transfecção , Proteínas rac1 de Ligação ao GTP/genética
18.
Mol Ther Methods Clin Dev ; 1: 14026, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26015968

RESUMO

A new cell-based medicinal product containing human regulatory macrophages, known as Mreg_UKR, has been developed and conforms to expectations of a therapeutic drug. Here, Mreg_UKR was subjected to pharmacokinetic, safety pharmacology, and toxicological testing, which identified no adverse reactions. These results would normally be interpreted as evidence of the probable clinical safety of Mreg_UKR; however, we contend that, owing to their uncertain biological relevance, our data do not fully support this conclusion. This leads us to question whether there is adequate scientific justification for preclinical safety testing of similar novel cell-based medicinal products using animal models. In earlier work, two patients were treated with regulatory macrophages prior to kidney transplantation. In our opinion, the absence of acute or chronic adverse effects in these cases is the most convincing available evidence of the likely safety of Mreg_UKR in future recipients. On this basis, we consider that safety information from previous clinical investigations of related cell products should carry greater weight than preclinical data when evaluating the safety profile of novel cell-based medicinal products. By extension, we argue that omitting extensive preclinical safety studies before conducting small-scale exploratory clinical investigations of novel cell-based medicinal products data may be justifiable in some instances.

19.
Mol Ther ; 21(2): 409-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22929659

RESUMO

Mouse monocytes exposed to macrophage colony-stimulating factor (M-CSF) and interferon-γ (IFN-γ) were driven to a novel suppressor phenotype. These regulatory macrophages (M regs) expressed markers distinguishing them from M0-, M1-, and M2-polarized macrophages and monocyte-derived dendritic cells (DCs). M regs completely suppressed polyclonal T cell proliferation through an inducible nitric oxide synthase (iNOS)-dependent mechanism. Additionally, M regs eliminated cocultured T cells in an allospecific fashion. In a heterotopic heart transplant model, a single intravenous administration of 5 × 10(6) donor-strain M regs before transplantation significantly prolonged allograft survival in fully immunocompetent recipients using both the stringent C3H-to-BALB/c (32.6 ± 4.5 versus 8.7 ± 0.2 days) and B6-to-BALB/c (31.1 ± 12 versus 9.7 ± 0.4 days) strain combinations. Nos2-deficient M regs did not prolong allograft survival, proving that M reg function in vivo is iNOS-dependent and mediated by living cells. M regs were detectable for at least 2 weeks postinfusion in allogeneic recipients. In their origin, development, phenotypic relationship with other in vitro-derived macrophages and functions, there are solid grounds to assert a near-equivalence of mouse and human M regs. It is concluded that mouse M regs represent a novel, phenotypically distinct subset of suppressor macrophages. Clinical applications of M reg therapy as an adjunct immunosuppressive therapy are currently being investigated within The ONE Study.


Assuntos
Sobrevivência de Enxerto , Transplante de Coração , Terapia de Imunossupressão/métodos , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Animais , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Transplante de Coração/métodos , Humanos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Análise em Microsséries , Monócitos/citologia , Monócitos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Transplante Homólogo
20.
Cell Commun Signal ; 10(1): 23, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22873932

RESUMO

BACKGROUND: Hepatocyte-like cells (NeoHepatocytes) generated from a peripheral blood monocyte-derived stem cell-like cell (the PCMO) are a promising alternative for primary hepatocytes in cell transplantation studies to cure liver diseases. However, to be therapeutically effective NeoHepatocytes are needed in large quantities. It was the aim of the present study to investigate i) whether the proportion of actively proliferating NeoHepatocytes can be enhanced by supplementing the PCMO differentiation medium (containing M-CSF, IL-3, and human serum) with either EGF or HB-EGF and ii) which signaling pathway underlies the promitotic effect. RESULTS: EGF and HB-EGF enhanced cell proliferation of PCMOs as demonstrated by increased expression of cycle control genes (ABL, ANAPC2, CDC2, CDK4, CDK6), phosphorylation of the retinoblastoma protein, and increased PCMO cell numbers after stimulation with EGF or HB-EGF. EGF also raised the number of monocytes expressing the proliferation marker Ki67. PCMOs expressed the EGF receptors EGFR (ERBB1) and ERBB3, and expression of both increased during PCMO generation. Phosphoimmunoblotting of PCMOs indicated that both EGF and HB-EGF activated MEK-1/2 and ERK1/2 in a concentration-dependent fashion with the effect of EGF being more prominent. EGF treatment further decreased expression of p47phox and increased that of Nanog indicating enhanced dedifferentiation and pluripotency, respectively. Treatment with both EGF and HB-EGF resulted in NeoHepatocytes with improved functional parameters. CONCLUSIONS: The results suggested that the addition of EGF or HB-EGF to PCMO differentiation medium superactivates MEK/ERK signaling which then increases both PCMO proliferation, number, and functional differentiation of PCMO-derived NeoHepatocytes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...