Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(3): 365-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308122

RESUMO

To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.


Assuntos
Hipertensão , Corrida , Ratos , Animais , Ratos Endogâmicos SHR , Ocitocina/metabolismo , Ocitocina/farmacologia , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismo , Hipertensão/metabolismo , Fadiga
2.
Neurosci Lett ; 771: 136464, 2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35051433

RESUMO

The expression of c-Fos protein has been extensively used as a marker of neuronal activation in response to stressful stimuli. Early maternal separation (MS) is a model of early life adversity that affects the responsiveness of the brain areas to stressors. Thus, this study examined the impact of early MS on activating stress-responsive areas in the brain of adult rats in response to physical (ether) or psychological (restraint) stressors. Male pups were divided for the MS or non-handled (NH) groups. The MS was carried out daily between the 2nd and 14th day of postnatal life and consisted in removing the dams from the cage for 180 min. The rats were then subjected to experimental protocols of restraint or ether exposure at 10-12 weeks old. The rats were anesthetized 90 min after exposure to the stressors, and their brains were prepared for immunohistochemical analysis of c-Fos immunoreactive (c-Fos-ir) neurons in the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON), medial preoptic area (MPA), medial amygdaloid nucleus (MeA), locus coeruleus (LC), and nucleus of the solitary tract (NST). The MS-group presented 86%, 125%, 73%, 56%, and 137% higher c-Fos-ir neurons in the LC, PVN, SON, MPA, and MeA, respectively, compared to NH-group in response to the restraint stressor. In addition, the MS-group presented 180%, 137%, 170%, and 138% higher c-Fos-ir neurons for the ether exposure in the LC, PVN, MPA, and MeA, respectively. Our results show a greater increase in neuronal activation in the MS group, indicating that early life adversity can induce reprogramming in the brain response to stress in adulthood.


Assuntos
Encéfalo/crescimento & desenvolvimento , Privação Materna , Estresse Psicológico/fisiopatologia , Animais , Encéfalo/citologia , Encéfalo/fisiopatologia , Feminino , Masculino , Neurônios/fisiologia , Ratos , Ratos Wistar
3.
Brain Struct Funct ; 224(8): 2775-2786, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31399877

RESUMO

This study evaluated the hypothalamic neuronal activation during exercise and investigated whether this activation is related to heat storage and exercise duration. Rats were subjected to a treadmill running that was interrupted at three different moments: (1) at the early phase, when minimal heat dissipation occurred due to tail vasoconstriction and the tail skin temperature (Tskin) reached its nadir; (2) at the steady-state phase, when both the Tskin and core body temperature (Tcore) plateaued at a high level (~ 20 min); and (3) at fatigue, when Tcore and Tskin were still elevated. c-Fos expression in the medial and ventromedial preoptic areas (mPOA and vmPOA), median preoptic nucleus (MnPO), paraventricular and supraoptic nucleus (PVN and SON), and septohypothalamic nucleus (SHy) was determined. Exercise increased the expression of c-Fos in all brain areas, but with different activation patterns of activation. c-Fos expression in the SHy and vmPOA was similar in all exercising groups, while in the mPOA, MnPO, and PVN, c-Fos expression gradually increased during exercise. Increased c-Fos in the SON was only evident after 20 min of exercise. Neuronal activation in the mPOA, MnPO, PVN, and SON was positively correlated with both exercise duration and heat storage. Our findings indicate that with the exception of SON, the brain areas analyzed are recruited following small changes in Tcore (~ 0.5 °C), while the SON is recruited only when Tcore reaches higher values (greater than 1.0 °C increase). c-Fos expression in the PVN, mPOA, MnPO, and SON is also influenced by exercise duration, which does not occur in the SHy and vmPOA.


Assuntos
Regulação da Temperatura Corporal , Hipotálamo/fisiologia , Atividade Motora , Neurônios/fisiologia , Animais , Masculino , Proteínas Proto-Oncogênicas c-fos , Ratos Wistar , Corrida , Temperatura Cutânea
4.
Front Physiol ; 7: 464, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790157

RESUMO

In the present study, we investigated whether the daily fluctuations of internal body temperature (Tb) and spontaneous locomotor activity (SLA) interact with the thermal and neuronal adjustments induced by high-intensity aerobic exercise until fatigue. The body temperature and SLA of adult Wistar rats (n = 23) were continuously recorded by telemetry for 48 h. Then, the rats were subjected to a protocol of graded exercise until fatigue or rest on the treadmill during light and dark-phases. Tb, tail skin temperature and ambient temperature during each experimental session were recorded. At the end of the last experimental session, the animals were anaesthetized; the brains were perfused and removed for immunohistochemical analysis of c-fos neuronal activation. The daily rhythms of SLA and Tb were strongly correlated (r = 0.88 and p < 0.001), and this was followed by a daily oscillation in both the ratio and the correlation index between these variables (p < 0.001). Exercise capacity was associated with a lower resting Tb (p < 0.01) and was higher in the light-phase (p < 0.001), resulting in an increased capacity to accumulate heat during exercise (p < 0.01). Independent of time-of-day, high intensity exercise strongly activated the hypothalamic paraventricular nucleus (PVN), the supra-optic nucleus (SON) and the locus coeruleus (LC) (p < 0.001) but not the suprachiasmatic nucleus (SCN). Taken together, our results points toward a role of the circadian system in a basal activity control of the thermoregulatory system as an important component for the onset of physical activities. In fact, rather than directly limiting the adjustments induced by exercise the present study brings new evidence that the effect of time-of-day on exercise performance occurs at the threshold level for each thermoregulatory system effector activity. This assumption is based on the observed resilience of the central clock to high-intensity exercise and the similarities in exercise-induced neuronal activation in the PVN, SON, and LC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...