Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(5): pgae174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711810

RESUMO

Although evidence indicates that the adult brain retains a considerable capacity for circuit formation, adult wiring has not been broadly considered and remains poorly understood. In this study, we investigate wiring activation in adult neurons. We show that the basic-helix-loop-helix transcription factor Ascl4 can induce wiring in different types of hippocampal neurons of adult mice. The new axons are mainly feedforward and reconfigure synaptic weights in the circuit. Mice with the Ascl4-induced circuits do not display signs of pathology and solve spatial problems equally well as controls. Our results demonstrate reprogrammed connectivity by a single transcriptional factor and provide insights into the regulation of brain wiring in adults.

2.
Cell Rep ; 43(5): 114220, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38735047

RESUMO

The suprachiasmatic nucleus (SCN) encodes time of day through changes in daily firing; however, the molecular mechanisms by which the SCN times behavior are not fully understood. To identify factors that could encode day/night differences in activity, we combine patch-clamp recordings and single-cell sequencing of individual SCN neurons in mice. We identify PiT2, a phosphate transporter, as being upregulated in a population of Vip+Nms+ SCN neurons at night. Although nocturnal and typically showing a peak of activity at lights off, mice lacking PiT2 (PiT2-/-) do not reach the activity level seen in wild-type mice during the light/dark transition. PiT2 loss leads to increased SCN neuronal firing and broad changes in SCN protein phosphorylation. PiT2-/- mice display a deficit in seasonal entrainment when moving from a simulated short summer to longer winter nights. This suggests that PiT2 is responsible for timing activity and is a driver of SCN plasticity allowing seasonal entrainment.


Assuntos
Núcleo Supraquiasmático , Animais , Núcleo Supraquiasmático/metabolismo , Camundongos , Neurônios/metabolismo , Locomoção , Camundongos Endogâmicos C57BL , Peptídeo Intestinal Vasoativo/metabolismo , Masculino , Ritmo Circadiano/fisiologia , Fotoperíodo , Camundongos Knockout , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética
3.
Mol Psychiatry ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503929

RESUMO

The precise function of specialized GABAergic interneuron subtypes is required to provide appropriate synaptic inhibition for regulating principal neuron excitability and synchronization within brain circuits. Of these, parvalbumin-type (PV neuron) dysfunction is a feature of several sex-biased psychiatric and brain disorders, although, the underlying developmental mechanisms are unclear. While the transcriptional action of sex hormones generates sexual dimorphism during brain development, whether kinase signaling contributes to sex differences in PV neuron function remains unexplored. In the hippocampus, we report that gephyrin, the main inhibitory post-synaptic scaffolding protein, is phosphorylated at serine S268 and S270 in a developmentally-dependent manner in both males and females. When examining GphnS268A/S270A mice in which site-specific phosphorylation is constitutively blocked, we found that sex differences in PV neuron density in the hippocampal CA1 present in WT mice were abolished, coincident with a female-specific increase in PV neuron-derived terminals and increased inhibitory input onto principal cells. Electrophysiological analysis of CA1 PV neurons indicated that gephyrin phosphorylation is required for sexually dimorphic function. Moreover, while male and female WT mice showed no difference in hippocampus-dependent memory tasks, GphnS268A/S270A mice exhibited sex- and task-specific deficits, indicating that gephyrin phosphorylation is differentially required by males and females for convergent cognitive function. In fate mapping experiments, we uncovered that gephyrin phosphorylation at S268 and S270 establishes sex differences in putative PV neuron density during early postnatal development. Furthermore, patch-sequencing of putative PV neurons at postnatal day 4 revealed that gephyrin phosphorylation contributes to sex differences in the transcriptomic profile of developing interneurons. Therefore, these early shifts in male-female interneuron development may drive adult sex differences in PV neuron function and connectivity. Our results identify gephyrin phosphorylation as a new substrate organizing PV neuron development at the anatomical, functional, and transcriptional levels in a sex-dependent manner, thus implicating kinase signaling disruption as a new mechanism contributing to the sex-dependent etiology of brain disorders.

4.
PNAS Nexus ; 2(4): pgad088, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077887

RESUMO

Dentate granule cells (GCs) have been characterized as unilaterally projecting neurons within each hippocampus. Here, we describe a unique class, the commissural GCs, which atypically project to the contralateral hippocampus in mice. Although commissural GCs are rare in the healthy brain, their number and contralateral axon density rapidly increase in a rodent model of temporal lobe epilepsies. In this model, commissural GC axon growth appears together with the well-studied hippocampal mossy fiber sprouting and may be important for the pathomechanisms of epilepsy. Our results augment the current view on hippocampal GC diversity and demonstrate powerful activation of a commissural wiring program in the adult brain.

5.
Front Neurosci ; 16: 888362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117624

RESUMO

Circuit formation is a defining characteristic of the developing brain. However, multiple lines of evidence suggest that circuit formation can also take place in adults, the mechanisms of which remain poorly understood. Here, we investigated the epilepsy-associated mossy fiber (MF) sprouting in the adult hippocampus and asked which cell surface molecules define its target specificity. Using single-cell RNAseq data, we found lack and expression of Pcdh11x in non-sprouting and sprouting neurons respectively. Subsequently, we used CRISPR/Cas9 genome editing to disrupt the Pcdh11x gene and characterized its consequences on sprouting. Although MF sprouting still developed, its target specificity was altered. New synapses were frequently formed on granule cell somata in addition to dendrites. Our findings shed light onto a key molecular determinant of target specificity in MF sprouting and contribute to understanding the molecular mechanism of adult brain rewiring.

6.
Eur J Neurosci ; 56(3): 4187-4213, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724981

RESUMO

Neurons in the mammalian central nervous system display an enormous capacity for circuit formation during development but not later in life. In principle, new circuits could be also formed in adult brain, but the absence of the developmental milieu and the presence of growth inhibition and hundreds of working circuits are generally viewed as unsupportive for such a process. Here, we bring together evidence from different areas of neuroscience-such as neurological disorders, adult-brain neurogenesis, innate behaviours, cell grafting, and in vivo cell reprogramming-which demonstrates robust circuit formation in adult brain. In some cases, adult-brain rewiring is ongoing and required for certain types of behaviour and memory, while other cases show significant promise for brain repair in disease models. Together, these examples highlight that the adult brain has higher capacity for structural plasticity than previously recognized. Understanding the underlying mechanisms behind this retained plasticity has the potential to advance basic knowledge regarding the molecular organization of synaptic circuits and could herald a new era of neural circuit engineering for therapeutic repair.


Assuntos
Encéfalo , Doenças do Sistema Nervoso , Adulto , Animais , Encéfalo/fisiologia , Humanos , Mamíferos , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
7.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35437266

RESUMO

Cortical GABAergic interneurons have been shown to fulfil important roles by inhibiting excitatory principal neurons. Recent transcriptomic studies have confirmed seminal discoveries that used anatomic and electrophysiological methods highlighting the existence of multiple different classes of GABAergic interneurons. Although some of these studies have emphasized that inter-regional differences may exist for a given class, the extent of such differences remains unknown. To address this problem, we used single-cell Patch-RNAseq to characterize neuropeptide Y (NPY)-positive GABAergic interneurons in superficial layers of the primary auditory cortex (AC) and in distal layers of area CA3 in mice. We found that more than 300 genes are differentially expressed in NPY-positive neurons between these two brain regions. For example, the AMPA receptor (AMPAR) auxiliary subunit Shisa9/CKAMP44 and the 5HT2a receptor (5HT2aR) are significantly higher expressed in auditory NPY-positive neurons. These findings guided us to perform pharmacological experiments that revealed a role for 5HT2aRs in auditory NPY-positive neurons. Specifically, although the application of 5HT led to a depolarization of both auditory and CA3 NPY-positive neurons, the 5HT2aR antagonist ketanserin only reversed membrane potential changes in auditory NPY-positive neurons. Our study demonstrates the potential of single-cell transcriptomic studies in guiding directed pharmacological experiments.


Assuntos
Neocórtex , Neuropeptídeo Y , Animais , Hipocampo/metabolismo , Interneurônios/fisiologia , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo
8.
Sci Adv ; 8(9): eabi6672, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235358

RESUMO

The prefrontal cortex (PFC) is a cortical brain region that regulates various cognitive functions. One distinctive feature of the PFC is its protracted adolescent maturation, which is necessary for acquiring mature cognitive abilities in adulthood. Here, we show that microglia, the brain's resident immune cells, contribute to this maturational process. We find that transient and cell-specific deficiency of prefrontal microglia in adolescence is sufficient to induce an adult emergence of PFC-associated impairments in cognitive functions, dendritic complexity, and synaptic structures. While prefrontal microglia deficiency in adolescence also altered the excitatory-inhibitory balance in adult prefrontal circuits, there were no cognitive sequelae when prefrontal microglia were depleted in adulthood. Thus, our findings identify adolescence as a sensitive period for prefrontal microglia to act on cognitive development.

9.
J Innate Immun ; 14(4): 335-354, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34864742

RESUMO

Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously, we showed that circulating MGHs have high motility and the interaction with the parasitoid rapidly triggers encapsulation. However, structural and molecular mechanisms behind these processes remained elusive. Here, we used detailed ultrastructural analysis and live cell imaging of MGHs to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and newly developed complex intracytoplasmic membrane structures, and abundant generation of giant cell exosomes in MGHs. In addition, we used RNA sequencing to study the transcriptomic profile of MGHs and activated plasmatocytes 72 h after infection, as well as the uninduced blood cells. This revealed that differentiation of MGHs was accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts related to vesicular function, cytoskeletal organization, and adhesion were enriched in MGHs. In addition, several orphan genes encoding for hemolysin-like proteins, pore-forming toxins of prokaryotic origin, were expressed at high level, which may be important for parasitoid elimination. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.


Assuntos
Hemócitos , Vespas , Animais , Drosophila , Interações Hospedeiro-Parasita , Imunidade Inata , Transcriptoma , Vespas/genética
10.
Cell Rep ; 37(10): 110098, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879268

RESUMO

Ventral subiculum (vSUB) is integral to the regulation of stress and reward; however, the intrinsic connectivity and synaptic properties of the inhibitory local circuit are poorly understood. Neurexin-3 (Nrxn3) is highly expressed in hippocampal inhibitory neurons, but its function at inhibitory synapses has remained elusive. Using slice electrophysiology, imaging, and single-cell RNA sequencing, we identify multiple roles for Nrxn3 at GABAergic parvalbumin (PV) interneuron synapses made onto vSUB regular-spiking (RS) and burst-spiking (BS) principal neurons. Surprisingly, we find that intrinsic connectivity of vSUB and synaptic function of Nrxn3 in vSUB are sexually dimorphic. We reveal that PVs make preferential contact with RS neurons in male mice, but BS neurons in female mice. Furthermore, we determine that despite comparable Nrxn3 isoform expression in male and female PV neurons, Nrxn3 knockout impairs synapse density, postsynaptic strength, and inhibitory postsynaptic current (IPSC) amplitude at PV-RS synapses in males, but enhances presynaptic release and IPSC amplitude in females.


Assuntos
Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural , Terminações Pré-Sinápticas/metabolismo , Animais , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos Knockout , Parvalbuminas/genética , Parvalbuminas/metabolismo , Caracteres Sexuais
11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34599103

RESUMO

Circuit formation in the central nervous system has been historically studied during development, after which cell-autonomous and nonautonomous wiring factors inactivate. In principle, balanced reactivation of such factors could enable further wiring in adults, but their relative contributions may be circuit dependent and are largely unknown. Here, we investigated hippocampal mossy fiber sprouting to gain insight into wiring mechanisms in mature circuits. We found that sole ectopic expression of Id2 in granule cells is capable of driving mossy fiber sprouting in healthy adult mouse and rat. Mice with the new mossy fiber circuit solved spatial problems equally well as controls but appeared to rely on local rather than global spatial cues. Our results demonstrate reprogrammed connectivity in mature neurons by one defined factor and an assembly of a new synaptic circuit in adult brain.


Assuntos
Proteína 2 Inibidora de Diferenciação/genética , Transcrição Gênica/genética , Animais , Epilepsia do Lobo Temporal/genética , Camundongos , Fibras Musgosas Hipocampais/fisiologia , Neurogênese/genética , Ratos
12.
Nat Commun ; 12(1): 108, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398060

RESUMO

The diversity reflected by >100 different neural cell types fundamentally contributes to brain function and a central idea is that neuronal identity can be inferred from genetic information. Recent large-scale transcriptomic assays seem to confirm this hypothesis, but a lack of morphological information has limited the identification of several known cell types. In this study, we used single-cell RNA-seq in morphologically identified parvalbumin interneurons (PV-INs), and studied their transcriptomic states in the morphological, physiological, and developmental domains. Overall, we find high transcriptomic similarity among PV-INs, with few genes showing divergent expression between morphologically different types. Furthermore, PV-INs show a uniform synaptic cell adhesion molecule (CAM) profile, suggesting that CAM expression in mature PV cells does not reflect wiring specificity after development. Together, our results suggest that while PV-INs differ in anatomy and in vivo activity, their continuous transcriptomic and homogenous biophysical landscapes are not predictive of these distinct identities.


Assuntos
Perfilação da Expressão Gênica , Hipocampo/citologia , Interneurônios/citologia , Interneurônios/metabolismo , Parvalbuminas/metabolismo , Envelhecimento/genética , Animais , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/genética , Fenômenos Eletrofisiológicos , Feminino , Regulação da Expressão Gênica , Hemoglobinas/genética , Hemoglobinas/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
13.
FASEB J ; 35(1): e21194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337553

RESUMO

Synapses are the fundamental structural unit by which neurons communicate. An orchestra of proteins regulates diverse synaptic functions, including synapse formation, maintenance, and elimination-synapse homeostasis. Some proteins of the larger C1q super-family are synaptic organizers involved in crucial neuronal processes in various brain regions. C1Q-like (C1QL) proteins bind to the adhesion G protein-coupled receptor B3 (ADGRB3) and act at synapses in a subset of circuits. To investigate the hypothesis that the secreted C1QL proteins mediate tripartite trans-synaptic adhesion complexes, we conducted an in vivo interactome study and identified new binding candidates. We demonstrate that C1QL3 mediates a novel cell-cell adhesion complex involving ADGRB3 and two neuronal pentraxins, NPTX1 and NPTXR. Analysis of single-cell RNA-Seq data from the cerebral cortex shows that C1ql3, Nptx1, and Nptxr are highly co-expressed in the same excitatory neurons. Thus, our results suggest the possibility that in vivo the three co-expressed proteins are presynaptically secreted and form a complex capable of binding to postsynaptically localized ADGRB3, thereby creating a novel trans-synaptic adhesion complex. Identifying new binding partners for C1QL proteins and deciphering their underlying molecular principles will accelerate our understanding of their role in synapse organization.


Assuntos
Proteína C-Reativa/metabolismo , Complemento C1q/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Proteína C-Reativa/genética , Adesão Celular/genética , Complemento C1q/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética , Sinapses/genética
15.
Nat Commun ; 11(1): 4990, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020478

RESUMO

Neurons are highly compartmentalized cells with tightly controlled subcellular protein organization. While brain transcriptome, connectome and global proteome maps are being generated, system-wide analysis of temporal protein dynamics at the subcellular level are currently lacking. Here, we perform a temporally-resolved surfaceome analysis of primary neuron cultures and reveal dynamic surface protein clusters that reflect the functional requirements during distinct stages of neuronal development. Direct comparison of surface and total protein pools during development and homeostatic synaptic scaling demonstrates system-wide proteostasis-independent remodeling of the neuronal surface, illustrating widespread regulation on the level of surface trafficking. Finally, quantitative analysis of the neuronal surface during chemical long-term potentiation (cLTP) reveals fast externalization of diverse classes of surface proteins beyond the AMPA receptor, providing avenues to investigate the requirement of exocytosis for LTP. Our resource (neurosurfaceome.ethz.ch) highlights the importance of subcellular resolution for systems-level understanding of cellular processes.


Assuntos
Proteínas de Membrana/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Homeostase , Potenciação de Longa Duração , Mapas de Interação de Proteínas , Transporte Proteico , Proteostase , Ratos
16.
Neuron ; 108(3): 486-499.e5, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32916091

RESUMO

Although the mammalian rest-activity cycle is controlled by a "master clock" in the suprachiasmatic nucleus (SCN) of the hypothalamus, it is unclear how firing of individual SCN neurons gates individual features of daily activity. Here, we demonstrate that a specific transcriptomically identified population of mouse VIP+ SCN neurons is active at the "wrong" time of day-nighttime-when most SCN neurons are silent. Using chemogenetic and optogenetic strategies, we show that these neurons and their cellular clocks are necessary and sufficient to gate and time nighttime sleep but have no effect upon daytime sleep. We propose that mouse nighttime sleep, analogous to the human siesta, is a "hard-wired" property gated by specific neurons of the master clock to favor subsequent alertness prior to dawn (a circadian "wake maintenance zone"). Thus, the SCN is not simply a 24-h metronome: specific populations sculpt critical features of the sleep-wake cycle.


Assuntos
Ritmo Circadiano/fisiologia , Neurônios do Núcleo Supraquiasmático/fisiologia , Animais , Masculino , Camundongos , Sono/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo
17.
Elife ; 92020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32490811

RESUMO

CCK-expressing interneurons (CCK+INs) are crucial for controlling hippocampal activity. We found two firing phenotypes of CCK+INs in rat hippocampal CA3 area; either possessing a previously undetected membrane potential-dependent firing or regular firing phenotype, due to different low-voltage-activated potassium currents. These different excitability properties destine the two types for distinct functions, because the former is essentially silenced during realistic 8-15 Hz oscillations. By contrast, the general intrinsic excitability, morphology and gene-profiles of the two types were surprisingly similar. Even the expression of Kv4.3 channels were comparable, despite evidences showing that Kv4.3-mediated currents underlie the distinct firing properties. Instead, the firing phenotypes were correlated with the presence of distinct isoforms of Kv4 auxiliary subunits (KChIP1 vs. KChIP4e and DPP6S). Our results reveal the underlying mechanisms of two previously unknown types of CCK+INs and demonstrate that alternative splicing of few genes, which may be viewed as a minor change in the cells' whole transcriptome, can determine cell-type identity.


Assuntos
Região CA3 Hipocampal/citologia , Colecistocinina/metabolismo , Interneurônios , Canais de Potássio Shal , Animais , Células Cultivadas , Interneurônios/química , Interneurônios/classificação , Interneurônios/metabolismo , Potenciais da Membrana/fisiologia , Fenótipo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar , Canais de Potássio Shal/química , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Transcriptoma/genética
18.
Cell Stem Cell ; 27(1): 98-109.e11, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32386572

RESUMO

Altered neural stem/progenitor cell (NSPC) activity and neurodevelopmental defects are linked to intellectual disability. However, it remains unclear whether altered metabolism, a key regulator of NSPC activity, disrupts human neurogenesis and potentially contributes to cognitive defects. We investigated links between lipid metabolism and cognitive function in mice and human embryonic stem cells (hESCs) expressing mutant fatty acid synthase (FASN; R1819W), a metabolic regulator of rodent NSPC activity recently identified in humans with intellectual disability. Mice homozygous for the FASN R1812W variant have impaired adult hippocampal NSPC activity and cognitive defects because of lipid accumulation in NSPCs and subsequent lipogenic ER stress. Homozygous FASN R1819W hESC-derived NSPCs show reduced rates of proliferation in embryonic 2D cultures and 3D forebrain regionalized organoids, consistent with a developmental phenotype. These data from adult mouse models and in vitro models of human brain development suggest that altered lipid metabolism contributes to intellectual disability.


Assuntos
Metabolismo dos Lipídeos , Células-Tronco Neurais , Animais , Proliferação de Células , Ácido Graxo Sintases , Hipocampo , Transtornos da Memória , Camundongos , Neurogênese
19.
Neuron ; 106(6): 1026-1043.e9, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32294466

RESUMO

The central amygdala (CeA) orchestrates adaptive responses to emotional events. While CeA substrates for defensive behaviors have been studied extensively, CeA circuits for appetitive behaviors and their relationship to threat-responsive circuits remain poorly defined. Here, we demonstrate that the CeA sends robust inhibitory projections to the lateral substantia nigra (SNL) that contribute to appetitive and aversive learning in mice. CeA→SNL neural responses to appetitive and aversive stimuli were modulated by expectation and magnitude consistent with a population-level salience signal, which was required for Pavlovian conditioned reward-seeking and defensive behaviors. CeA→SNL terminal activation elicited reinforcement when linked to voluntary actions but failed to support Pavlovian associations that rely on incentive value signals. Consistent with a disinhibitory mechanism, CeA inputs preferentially target SNL GABA neurons, and CeA→SNL and SNL dopamine neurons respond similarly to salient stimuli. Collectively, our results suggest that amygdala-nigra interactions represent a previously unappreciated mechanism for influencing emotional behaviors.


Assuntos
Comportamento Apetitivo/fisiologia , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Substância Negra/fisiologia , Animais , Condicionamento Clássico/fisiologia , Emoções , Camundongos , Vias Neurais , Reforço Psicológico , Recompensa , Substância Negra/citologia
20.
Neuron ; 104(5): 899-915.e8, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31672263

RESUMO

Chronic stress (CS) is a major risk factor for the development of depression. Here, we demonstrate that CS-induced hyperactivity in ventral tegmental area (VTA)-projecting lateral habenula (LHb) neurons is associated with increased passive coping (PC), but not anxiety or anhedonia. LHb→VTA neurons in mice with increased PC show increased burst and tonic firing as well as synaptic adaptations in excitatory inputs from the entopeduncular nucleus (EP). In vivo manipulations of EP→LHb or LHb→VTA neurons selectively alter PC and effort-related motivation. Conversely, dorsal raphe (DR)-projecting LHb neurons do not show CS-induced hyperactivity and are targeted indirectly by the EP. Using single-cell transcriptomics, we reveal a set of genes that can collectively serve as biomarkers to identify mice with increased PC and differentiate LHb→VTA from LHb→DR neurons. Together, we provide a set of biological markers at the level of genes, synapses, cells, and circuits that define a distinctive CS-induced behavioral phenotype.


Assuntos
Habenula/fisiopatologia , Motivação/fisiologia , Neurônios , Angústia Psicológica , Animais , Comportamento Animal , Depressão/etiologia , Depressão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...