Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743690

RESUMO

Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety 'Calardis Musqué' and the late-ripening variety 'Villard Blanc'. Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 years. Through locus-specific-marker-enrichment and recombinant screening of ∼1000 additional genotypes, we refined the originally postulated 5 Mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor (ERF) VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal 'Pinot' variant first mentioned in the 17th century. 'Pinot Precoce Noir' passed this allele over 'Madeleine Royale' to the maternal grandparent 'Bacchus Weiss' and, ultimately, to the maternal parent 'Calardis Musqué'. Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology.

2.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955692

RESUMO

GRB14/COBLL1 locus has been shown to be associated with body fat distribution (FD), but neither the causal gene nor its role in metabolic diseases has been elucidated. We hypothesize that GRB14/COBLL1 may act as the causal genes for FD-related SNPs (rs10195252 and rs6738627), and that they may be regulated by SNP to effect obesity-related metabolic traits. We genotyped rs10195252 and rs6738627 in 2860 subjects with metabolic phenotypes. In a subgroup of 560 subjects, we analyzed GRB14/COBLL1 gene expression in paired visceral and subcutaneous adipose tissue (AT) samples. Mediation analyses were used to determine the causal relationship between SNPs, AT GRB14/COBLL1 mRNA expression, and obesity-related traits. In vitro gene knockdown of Grb14/Cobll1 was used to test their role in adipogenesis. Both gene expressions in AT are correlated with waist circumference. Visceral GRB14 mRNA expression is associated with FPG and HbA1c. Both SNPs are associated with triglycerides, FPG, and leptin levels. Rs10195252 is associated with HbA1c and seems to be mediated by visceral AT GRB14 mRNA expression. Our data support the role of the GRB14/COBLL1 gene expression in body FD and its locus in metabolic sequelae: in particular, lipid metabolism and glucose homeostasis, which is likely mediated by AT GRB14 transcript levels.


Assuntos
Tecido Adiposo , Obesidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Hemoglobinas Glicadas/metabolismo , Humanos , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Relação Cintura-Quadril
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...