Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 16: 657, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27542970

RESUMO

BACKGROUND: Glioblastomas (GBMs) are highly malignant brain tumours with a poor prognosis, and current cytotoxic regimens provide only a limited survival benefit. The PI3K/Akt/mTOR pathway has been an attractive target for therapy due to its high activation in GBMs as well as other cancers. The dual pan-PI3K/mTOR kinase inhibitor dactolisib (NVP-BEZ235) is an anti-neoplastic compound currently under investigation. However, little is known about its efficacy in human GBMs. We aimed at evaluating the efficacy of dactolisib in human glioblastoma cells, as well as in murine models carrying human GBM xenografts. METHODS: To assess the effect of dactolisib in vitro, MTS assay, manual cell count, BrdU incorporation and Annexin V staining experiments were used to observe growth and apoptosis. Furthermore, Akt phosphorylation (S473), a downstream target of PI3K, was explored by western blotting. Animal studies utilizing orthotopic xenograft models of glioblastoma were performed in nude rats and NOD/SCID mice to monitor survival benefit or inhibition of tumor growth. RESULTS: We found that dactolisib in vitro shows excellent dose dependent anti-growth properties and increase in apoptosis. Moreover, dose dependent inhibition of Akt phosphorylation (S473), a downstream effect of PI3K, was observed by western blotting. However, in two independent animal studies utilizing nude rats and NOD/SCID mice in orthotopic xenograft models of glioblastoma, we observed no survival benefit or inhibition of tumour growth. Severe side effects were observed, such as elevated levels of blood glucose and the liver enzyme alanine transaminase (ALT), in addition to diarrhoea, hair loss (alopecia), skin rash and accumulation of saliva in the oral cavity. CONCLUSION: Taken together, our results suggest that despite the anti-neoplastic efficacy of dactolisib in glioma treatment in vitro, its utility in vivo is questionable due to toxicity.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Imidazóis/administração & dosagem , Quinolinas/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/metabolismo , Humanos , Imidazóis/efeitos adversos , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolinas/efeitos adversos , Ratos , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Neurooncol ; 129(1): 57-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283525

RESUMO

Glioblastomas (GBMs) are aggressive brain tumours with a dismal prognosis, despite combined surgery, radio- and chemotherapy. Close to 90 % of all GBMs harbour a deregulated PI3K pathway, which is essential in regulating central cellular functions such as proliferation, cell growth, motility and survival. Thus, PI3K represents a potential target for molecular therapy in GBM. We investigated the anti-tumour efficacy of the PI3K inhibitor buparlisib (NVP-BKM120) in GBM cell lines in vitro and in vivo, when treatment was initiated after MRI-confirmed tumour engraftment. We found that buparlisib inhibited glioma cell proliferation in a dose dependent manner, demonstrated by MTS assay, manual cell count and BrdU incorporation. A dose dependent increase in apoptosis was observed through flow cytometric analysis. Furthermore, by immunocytochemistry and western blot, we found a dose dependent inhibition of Akt phosphorylation. Moreover, buparlisib prolonged survival of nude rats harboring human GBM xenografts in three independent studies and reduced the tumours' volumetric increase, as determined by MRI. In addition, histological analyses of xenograft rat brains showed necrotic areas and change in tumour cell nuclei in buparlisib-treated animals. The rats receiving buparlisib maintained their weight, activity level and food- and water intake. In conclusion, buparlisib effectively inhibits glioma cell proliferation in vitro and growth of human GBM xenografts in nude rats. Moreover, the compound is well tolerated when administered at doses providing anti-tumour efficacy. Thus, buparlisib may have a future role in glioma therapy, and further studies are warranted to validate this compound for human use.


Assuntos
Aminopiridinas/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Morfolinas/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase , Ensaios Antitumorais Modelo de Xenoenxerto , Aminopiridinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/metabolismo , Humanos , Morfolinas/uso terapêutico , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Nus , Análise de Sobrevida
3.
Oncogene ; 34(49): 5951-9, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25798841

RESUMO

Glioblastomas (GBMs) are aggressive brain tumors that always recur after radiotherapy. Cystine, mainly provided by the system X(c)(-) antiporter, is a requirement for glioma cell synthesis of glutathione (GSH) which has a critical role in scavenging free radicals, for example, after radiotherapy. Thus, we hypothesized that the X(c)(-)-inhibitor sulfasalazine (SAS) could potentiate the efficacy of radiotherapy against gliomas. Here, we show that the catalytic subunit of system X(c)(-), xCT, was uniformly expressed in a panel of 30 human GBM biopsies. SAS treatment significantly reduced cystine uptake and GSH levels, whereas it significantly increased the levels of reactive oxygen species (ROS) in glioma cells in vitro. Furthermore, SAS and radiation synergistically increased DNA double-strand breaks and increased glioma cell death, whereas adding the antioxidant N-acetyl-L-cysteine (NAC) reversed cell death. Moreover, SAS and gamma knife radiosurgery (GKRS) synergistically prolonged survival in nude rats harboring human GBM xenografts, compared with controls or either treatment alone. In conclusion, SAS effectively blocks cystine uptake in glioma cells in vitro, leading to GSH depletion and increased ROS levels, DNA damage and cell death. Moreover, it potentiates the anti-tumor efficacy of GKRS in rats with human GBM xenografts, providing a survival benefit. Thus, SAS may have a role as a radiosensitizer to enhance the efficacy of current radiotherapies for glioma patients.


Assuntos
Neoplasias Encefálicas/terapia , Cistina/metabolismo , Glioblastoma/terapia , Glutationa/metabolismo , Radiossensibilizantes/administração & dosagem , Sulfassalazina/administração & dosagem , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Reposicionamento de Medicamentos , Glioblastoma/metabolismo , Humanos , Radiossensibilizantes/uso terapêutico , Radiocirurgia , Ratos , Sulfassalazina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...