Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 410: 135374, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608553

RESUMO

Naturally occurring polyphenols can modify the molecular properties of food allergens. For the major apple allergen Mal d 1 it has been postulated that chemical reactions with polyphenols cause permanent changes in the tertiary structure, causing a loss of conformational IgE epitopes and reducing allergenicity. In our study, we investigated the effect that reactions with oxidized polyphenols have on the structure of Mal d 1 by mass spectrometry and NMR spectroscopy. We showed that a surface-exposed cysteine residue in this allergen spontaneously reacts with oxidized polyphenols under formation of a defined covalent adduct. Chemical modification of Mal d 1 did not destabilize or perturb the three-dimensional fold, nor did it interfere with ligand binding to its internal pocket. A structural model of the chemically modified apple allergen is presented, which reveals that the bound polyphenol partially covers a conformational IgE epitope on the protein surface.


Assuntos
Malus , Malus/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química , Cisteína , Alérgenos/química , Epitopos , Imunoglobulina E
2.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897827

RESUMO

PR-10 proteins constitute a major cause of food allergic reactions. Birch-pollen-related food allergies are triggered by the immunologic cross-reactivity of IgE antibodies with structurally homologous PR-10 proteins that are present in birch pollen and various food sources. While the three-dimensional structures of PR-10 food allergens have been characterized in detail, only a few experimental studies have addressed the structural flexibility of these proteins. In this study, we analyze the millisecond-timescale structural flexibility of thirteen PR-10 proteins from prevalent plant food sources by NMR relaxation-dispersion spectroscopy, in a comparative manner. We show that all the allergens in this study have inherently flexible protein backbones in solution, yet the extent of the structural flexibility appears to be strikingly protein-specific (but not food-source-specific). Above-average flexibility is present in the two short helices, α1 and α2, which form a V-shaped support for the long C-terminal helix α3, and shape the internal ligand-binding cavity, which is characteristic for PR-10 proteins. An in-depth analysis of the NMR relaxation-dispersion data for the PR-10 allergen from peanut reveals the presence of at least two subglobal conformational transitions on the millisecond timescale, which may be related to the release of bound low-molecular-weight ligands from the internal cavity.


Assuntos
Hipersensibilidade Alimentar , Pólen , Alérgenos , Sequência de Aminoácidos , Antígenos de Plantas , Betula/metabolismo , Reações Cruzadas , Proteínas de Plantas/metabolismo , Pólen/metabolismo
3.
J Agric Food Chem ; 69(29): 8120-8129, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34260238

RESUMO

Peach (Prunus persica) is among the fruits most frequently reported to cause food allergies. Allergic reactions commonly result from previous sensitization to the birch pollen allergen Bet v 1, followed by immunological cross-reactivity of IgE antibodies to structurally related proteins in peach. In this study, we present the three-dimensional NMR solution structure of the cross-reactive peach allergen Pru p 1 (isoform Pru p 1.0101). This 17.5 kDa protein adopts the canonical Bet v 1 fold, composed of a seven-stranded ß-sheet and three α-helices enclosing an internal cavity. In Pru p 1, the inner surface of the cavity contains an array of hydroxyl-bearing amino acids surrounded by a hydrophobic patch, constituting a docking site for amphiphilic molecules. NMR-guided docking of the cytokinin molecule zeatin to the internal cavity of Pru p 1 provides a structure-based rationale for the effect that zeatin binding has on the protein's RNase activity.


Assuntos
Hipersensibilidade Alimentar , Prunus persica , Alérgenos , Antígenos de Plantas , Proteínas de Plantas , Zeatina
4.
Sci Rep ; 11(1): 4173, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603065

RESUMO

A major proportion of allergic reactions to hazelnuts (Corylus avellana) are caused by immunologic cross-reactivity of IgE antibodies to pathogenesis-related class 10 (PR-10) proteins. Intriguingly, the four known isoforms of the hazelnut PR-10 allergen Cor a 1, denoted as Cor a 1.0401-Cor a 1.0404, share sequence identities exceeding 97% but possess different immunologic properties. In this work we describe the NMR solution structures of these proteins and provide an in-depth study of their biophysical properties. Despite sharing highly similar three-dimensional structures, the four isoforms exhibit remarkable differences regarding structural flexibility, hydrogen bonding and thermal stability. Our experimental data reveal an inverse relation between structural flexibility and IgE-binding in ELISA experiments, with the most flexible isoform having the lowest IgE-binding potential, while the isoform with the most rigid backbone scaffold displays the highest immunologic reactivity. These results point towards a significant entropic contribution to the process of antibody binding.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Corylus/imunologia , Imunoglobulina E/imunologia , Proteínas de Plantas/imunologia , Sequência de Aminoácidos , Reações Cruzadas/imunologia , Hipersensibilidade/imunologia , Isoformas de Proteínas/imunologia
5.
Oncogene ; 39(5): 1080-1097, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591479

RESUMO

The transcription factor FOXO3 has been associated in different tumor entities with hallmarks of cancer, including metastasis, tumor angiogenesis, maintenance of tumor-initiating stem cells, and drug resistance. In neuroblastoma (NB), we recently demonstrated that nuclear FOXO3 promotes tumor angiogenesis in vivo and chemoresistance in vitro. Hence, inhibiting the transcriptional activity of FOXO3 is a promising therapeutic strategy. However, as no FOXO3 inhibitor is clinically available to date, we used a medium-throughput fluorescence polarization assay (FPA) screening in a drug-repositioning approach to identify compounds that bind to the FOXO3-DNA-binding-domain (DBD). Carbenoxolone (CBX), a glycyrrhetinic acid derivative, was identified as a potential FOXO3-inhibitory compound that binds to the FOXO3-DBD with a binding affinity of 19 µM. Specific interaction of CBX with the FOXO3-DBD was validated by fluorescence-based electrophoretic mobility shift assay (FAM-EMSA). CBX inhibits the transcriptional activity of FOXO3 target genes, as determined by chromatin immunoprecipitation (ChIP), DEPP-, and BIM promoter reporter assays, and real-time RT-PCR analyses. In high-stage NB cells with functional TP53, FOXO3 triggers the expression of SESN3, which increases chemoprotection and cell survival. Importantly, FOXO3 inhibition by CBX treatment at pharmacologically relevant concentrations efficiently repressed FOXO3-mediated SESN3 expression and clonogenic survival and sensitized high-stage NB cells to chemotherapy in a 2D and 3D culture model. Thus, CBX might be a promising novel candidate for the treatment of therapy-resistant high-stage NB and other "FOXO-resistant" cancers.


Assuntos
Carbenoxolona/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Forkhead Box O3/antagonistas & inibidores , Proteína Forkhead Box O3/metabolismo , Neuroblastoma/patologia , Bibliotecas de Moléculas Pequenas , Carbenoxolona/química , Morte Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Humanos , Peso Molecular , Estadiamento de Neoplasias , Transcrição Gênica/efeitos dos fármacos
6.
Biomol NMR Assign ; 14(1): 45-49, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31691092

RESUMO

In large parts of Europe, Northern America and China people are suffering from allergies after consuming certain kinds of fruits and vegetables. Typical allergic symptoms range from scratching and itching of the throat to severe symptoms like rhino conjunctivitis and anaphylaxis. For hazelnuts (Corylus avellana), these allergies result from initial sensitization to the birch (Betula verrucosa) pollen allergen Bet v 1 and subsequent development of allergic cross-reactions to proteins that are similar in their three-dimensional structure to the sensitizing protein Bet v 1. The cross-reactive proteins in hazelnut are the four isoforms Cor a 1.04 with a molecular weight of about 17.5 kDa. Significant differences regarding the immunologic behavior of these proteins have been reported. In this work we assigned backbone and side chain 1H, 13C, and 15N chemical shifts of these four isoforms, Cor a 1.0401, Cor a 1.0402, Cor a 1.0403, and Cor a 1.0404 by solution NMR spectroscopy. The chemical shift data confirm the characteristic Bet v onefold for all four isoforms, consisting of seven ß-strands that are separated by two short α-helices, along with a long C-terminal α-helix. These data provide the basis for a comparative structural and dynamic analysis of these proteins by NMR in order to characterize their different immunologic cross-reactivities on a molecular level.


Assuntos
Alérgenos/química , Corylus/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Isoformas de Proteínas/química , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética
7.
J Mol Biol ; 431(19): 3889-3899, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31401120

RESUMO

Neurofibromatosis type I (NF1) and Legius syndrome are rare inherited disorders that share diagnostic symptoms including dermal abnormalities like axillary and inguinal freckling and café au lait spots. In addition, patients suffering from NF1 have a demanding risk for the development of severe tumors of the peripheral and central nervous system among other NF1-specific symptoms. NF1 and Legius syndrome are caused by alterations in the NF1 and SPRED1 genes encoding the Ras inhibitors neurofibromin and Spred1 (sprouty related EVH1 domain-containing protein), respectively. Neurofibromin functions as a Ras-specific GTPase-activating protein (Ras-GAP), and Spred1 enhances Ras inactivation by recruiting neurofibromin from the cytosol to membrane-anchored Ras. In a previous study, we mapped the Spred binding site to the GAP-related domain of neurofibromin (NF1-GAP) and identified the GAPex subdomain as critical for Spred1 binding. Here, we characterize the binding site of these proteins in more detail focusing on a mutant Spred1 variant carrying a pathogenic missense mutation (threonine 102 to arginine). Introduction of this mutation, which locates at the N-terminal EVH1 domain of Spred1, weakens the interaction with neurofibromin by about 3 orders of magnitude without perturbing the protein fold, and the binding site of NF1-GAP on the mutant Spred1(EVH1) variant can be identified by NMR spectroscopy. Taken together, our data provide structural insight into the interaction of Spred1 and neurofibromin and characterize the structural or functional consequence of selected patient-derived mutations associated with Legius syndrome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Manchas Café com Leite/genética , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Mutação , Neurofibromina 1/química , Ligação Proteica , Domínios Proteicos
8.
Biomol NMR Assign ; 13(1): 127-130, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30542820

RESUMO

In Europe, Northern America, and China a large number of individuals are suffering from peach (Prunus persica) allergy caused by the protein Pru p 1. Immunologic reactions against this 17.5 kDa protein result from initial sensitization to the birch (Betula verrucosa) pollen allergen Bet v 1 and subsequent immunologic cross-reactivity of Bet v 1 specific antibodies. Allergic symptoms typically include severe itching, scratching of the throat, and rhino conjunctivitis. So far, experimental structural data for the peach allergen Pru p 1 are not available. In a first step towards the elucidation of the structure of this protein we assigned backbone and side chain 1H, 13C, and 15N chemical shifts of the naturally occurring isoform Pru p 1.0101 by solution NMR spectroscopy. Our chemical shift data indicate that this protein fold consists of seven ß-strands separated by two short α-helices and a long C-terminal α-helix, which is in accordance with the reported crystal structure of Bet v 1. Our data provide the basis for determining the three-dimensional solution structure of this protein and to characterize its immunologic cross-reactivity on a structural basis.


Assuntos
Antígenos de Plantas/química , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/química , Prunus persica/química , Sequência de Aminoácidos , Estrutura Secundária de Proteína
9.
Biomol NMR Assign ; 11(2): 305-308, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28831766

RESUMO

Neurofibromin and Sprouty-related EVH1 domain-containing protein 1 (Spred1) both act as negative regulators of the mitogen-activated protein kinase pathway and are associated with the rare diseases Neurofibromatosis type 1 and Legius syndrome, respectively. Spred1 recruits the major GTPase activating protein (GAP) neurofibromin from the cytosol to the membrane in order to inactivate the small G protein Ras. These functions are dependent on the N-terminal EVH1 domain and the C-terminal Sprouty domain of Spred1 whereas the former specifically recognizes the GAP related domain of neurofibromin and the latter is responsible for membrane targeting. Within the GAP domain, Spred1 binding depends on the GAPex portion which is dispensable for Ras inactivation. In a first step towards the characterization of the Neurofibromin Spred1 interface in solution we assigned backbone and side chain 1H, 13C, and 15N chemical shifts of the Spred1 derived EVH1 domain. Our chemical shift data analysis indicate seven consecutive ß-strands followed by a C-terminal α-helix which is in agreement with the previously reported crystal structure of Spred1(EVH1). Our data provide a framework for further analysis of the function of patient-derived mutations associated with rare diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Neurofibromina 1/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas Adaptadoras de Transdução de Sinal , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...