Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075199

RESUMO

Herein we report the synthesis and characterization of a novel bis-tridentate 1,3,4-thiadiazole ligand (L = 2,5-bis[(2-pyridylmethyl)thio]methyl-1,3,4-thiadiazole). Two new mononuclear complexes of the type [MII(L)2](ClO4)2 (with M = FeII (C1) and CoII (C2)) have been synthesized, containing the new ligand (L). In both complexes the metal centers are coordinated by an N4S2-donorset and each of the two ligands is donating to the metal ion with just one of the tridentate pockets. The iron(II) complex (C1) is in the low spin [LS] state below room temperature and shows an increase in the magnetic moment only above 300 K. In contrast, the cobalt(II) complex (C2) shows a gradual spin crossover (SCO) with T1/2 = 175 K. To our knowledge, this is the first cobalt(II) SCO complex with an N4S2-coordination.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Ferro/química , Ligantes , Magnetismo , Marcadores de Spin , Tiadiazóis/síntese química , Tiadiazóis/química
2.
Inorg Chem ; 59(5): 2843-2852, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32043871

RESUMO

The dimeric motif is the smallest unit for two interacting spin centers allowing for systematic investigations of cooperative interactions. As spin transition compounds, dinuclear complexes are of particular interest, since they potentially reveal a two-step spin crossover (SCO), switching between the high spin-high spin [HS-HS], the high spin-low spin [HS-LS], and the low spin-low spin [LS-LS] states. Herein, we report the synthesis and characterization of six dinuclear iron(II) complexes [FeII2(µ2-L1)2](BF4)4 (C1), [FeII2(µ2-L1)2](ClO4)4 (C2), [FeII2(µ2-L1)2](F3CSO3)4 (C3), [FeII2(µ2-L2)2](BF4)4 (C4), [FeII2(µ2-L2)2](BF4)4 (C5), and [FeII2(µ2-L2)2](BF4)4 (C6), based on the 1,3,4-thiadiazole bridging motif. The two novel bis-tridentate ligands (L1 = 2,5-bis{[(1H-imidazol-2-ylmethyl)-amino]-methyl}-1,3,4-thiadiazole and L2 = 2,5-bis{[(thiazol-2-ylmethyl)-amino]-methyl}-1,3,4-thiadiazole) were employed in the presence of iron(II) salts with the different counterions. Upon varying ligands and counterions, we were able to change the magnetic properties of the complexes from a temperature-independent [HS-HS] spin state over a one-step spin transition toward a two-step SCO. When cooled slowly from room temperature, the two-step SCO goes along with two distinct phase transitions, and in the intermediate mixed [HS-LS] state distinct HS/LS pairs can be identified unambiguously. In contrast, rapid cooling precludes a crystallographically observable phase transition. For the mixed [HS-LS] state Mössbauer spectroscopy confirms a statistical (random) orientation of adjacent [HS-LS]·[HS-LS]·[HS-LS] chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...