Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 16: 26-32, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33458340

RESUMO

BACKGROUND AND PURPOSE: There is a continual need for more accurate and effective dosimetric systems for quality assurance (QA) as radiotherapy evolves in complexity. The purpose of this project was to introduce a new system that minimally perturbs the main beam, while assessing its real time 2D dose-rate and field shapes. The system combined reusability, linear dose-rate response, and high spatial and time resolution in a single radiation detection technology that can be applied to surface dose estimation and QA. MATERIALS AND METHODS: We developed a 2D prototype system consisting of a camera, focusing lenses and short pass filter, placed on the head of a linear accelerator, facing an Al2O3:C,Mg radioluminescent film. To check the appropriateness of multi-leaf collimator, stability/reproducibility QA tests were prepared using the treatment planning system: including the routinely used alternating leaves, chair and pyramid checks. RESULTS: The Al2O3:C,Mg film did not perturb the dose vs. depth dose curves determined with a point detector (-0.5% difference). Our results showed a dose-rate linear film response (R2 = 0.999), from 5 to 600 MU/min. Measured output factors agreed with reference data within ~1%, indicating a potential for small field dosimetry. Both chair and pyramid measured profiles were comparable with those obtained with the treatment planning system within 1%. The alternating leaves test showed an average discrepancy in the valleys of 14%. CONCLUSIONS: The prototype demonstrated promising results. It obviated the need for corrections regarding the relative position of the camera, confirming accurate dose-rate delivery and detection of radiation fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...