Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-919183

RESUMO

Emerging and re-emerging infectious diseases, such as SARS, MERS, Zika and highly pathogenic influenza present a major threat to public health1-3. Despite intense research effort, how, when and where novel diseases appear are still the source of considerable uncertainly. A severe respiratory disease was recently reported in the city of Wuhan, Hubei province, China. At the time of writing, at least 62 suspected cases have been reported since the first patient was hospitalized on December 12nd 2019. Epidemiological investigation by the local Center for Disease Control and Prevention (CDC) suggested that the outbreak was associated with a sea food market in Wuhan. We studied seven patients who were workers at the market, and collected bronchoalveolar lavage fluid (BALF) from one patient who exhibited a severe respiratory syndrome including fever, dizziness and cough, and who was admitted to Wuhan Central Hospital on December 26th 2019. Next generation metagenomic RNA sequencing4 identified a novel RNA virus from the family Coronaviridae designed WH-Human-1 coronavirus (WHCV). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that WHCV was most closely related (89.1% nucleotide similarity similarity) to a group of Severe Acute Respiratory Syndrome (SARS)-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) previously sampled from bats in China and that have a history of genomic recombination. This outbreak highlights the ongoing capacity of viral spill-over from animals to cause severe disease in humans.

2.
Chinese Medical Journal ; (24): E007-E007, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-811525

RESUMO

Background@#A patient’s infectivity is determined by the presence of the virus in different body fluids, secretions, and excreta. The persistence and clearance of viral RNA from different specimens of patients with 2019 novel coronavirus disease (COVID-19) remain unclear. This study analyzed the clearance time and factors influencing 2019 novel coronavirus (2019-nCoV) RNA in different samples from patients with COVID-19, providing further evidence to improve the management of patients during convalescence.@*Methods@#The clinical data and laboratory test results of convalescent patients with COVID-19 who were admitted to from January 20, 2020 to February 10, 2020 were collected retrospectively. The reverse transcription polymerase chain reaction (RT-PCR) results for patients’ oropharyngeal swab, stool, urine, and serum samples were collected and analyzed. Convalescent patients refer to recovered non-febrile patients without respiratory symptoms who had two successive (minimum 24 h sampling interval) negative RT-PCR results for viral RNA from oropharyngeal swabs. The effects of cluster of differentiation 4 (CD4)+ T lymphocytes, inflammatory indicators, and glucocorticoid treatment on viral nucleic acid clearance were analyzed.@*Results@#In the 292 confirmed cases, 66 patients recovered after treatment and were included in our study. In total, 28 (42.4%) women and 38 men (57.6%) with a median age of 44.0 (34.0–62.0) years were analyzed. After in-hospital treatment, patients’ inflammatory indicators decreased with improved clinical condition. The median time from the onset of symptoms to first negative RT-PCR results for oropharyngeal swabs in convalescent patients was 9.5 (6.0–11.0) days. By February 10, 2020, 11 convalescent patients (16.7%) still tested positive for viral RNA from stool specimens and the other 55 patients’ stool specimens were negative for 2019-nCoV following a median duration of 11.0 (9.0–16.0) days after symptom onset. Among these 55 patients, 43 had a longer duration until stool specimens were negative for viral RNA than for throat swabs, with a median delay of 2.0 (1.0–4.0) days. Results for only four (6.9%) urine samples were positive for viral nucleic acid out of 58 cases; viral RNA was still present in three patients’ urine specimens after throat swabs were negative. Using a multiple linear regression model (F=2.669, P=0.044, and adjusted R2=0.122), the analysis showed that the CD4+ T lymphocyte count may help predict the duration of viral RNA detection in patients’ stools (t=-2.699, P=0.010). The duration of viral RNA detection from oropharyngeal swabs and fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (15 days vs 8.0 days, respectively; t=2.550, P=0.013) and the duration of viral RNA detection in fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (20 days vs 11 days, respectively; t=4.631, P <0.001). There was no statistically significant difference in inflammatory indicators between patients with positive fecal viral RNA test results and those with negative results (P >0.05).@*Conclusions@#In brief, as the clearance of viral RNA in patients’ stools was delayed compared to that in oropharyngeal swabs, it is important to identify viral RNA in feces during convalescence. Because of the delayed clearance of viral RNA in the glucocorticoid treatment group, glucocorticoids are not recommended in the treatment of COVID-19, especially for mild disease. The duration of RNA detection may relate to host cell immunity.

3.
Chinese Medical Journal ; (24): 1039-1043, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-827703

RESUMO

BACKGROUND@#A patient's infectivity is determined by the presence of the virus in different body fluids, secretions, and excreta. The persistence and clearance of viral RNA from different specimens of patients with 2019 novel coronavirus disease (COVID-19) remain unclear. This study analyzed the clearance time and factors influencing 2019 novel coronavirus (2019-nCoV) RNA in different samples from patients with COVID-19, providing further evidence to improve the management of patients during convalescence.@*METHODS@#The clinical data and laboratory test results of convalescent patients with COVID-19 who were admitted to from January 20, 2020 to February 10, 2020 were collected retrospectively. The reverse transcription polymerase chain reaction (RT-PCR) results for patients' oropharyngeal swab, stool, urine, and serum samples were collected and analyzed. Convalescent patients refer to recovered non-febrile patients without respiratory symptoms who had two successive (minimum 24 h sampling interval) negative RT-PCR results for viral RNA from oropharyngeal swabs. The effects of cluster of differentiation 4 (CD4)+ T lymphocytes, inflammatory indicators, and glucocorticoid treatment on viral nucleic acid clearance were analyzed.@*RESULTS@#In the 292 confirmed cases, 66 patients recovered after treatment and were included in our study. In total, 28 (42.4%) women and 38 men (57.6%) with a median age of 44.0 (34.0-62.0) years were analyzed. After in-hospital treatment, patients' inflammatory indicators decreased with improved clinical condition. The median time from the onset of symptoms to first negative RT-PCR results for oropharyngeal swabs in convalescent patients was 9.5 (6.0-11.0) days. By February 10, 2020, 11 convalescent patients (16.7%) still tested positive for viral RNA from stool specimens and the other 55 patients' stool specimens were negative for 2019-nCoV following a median duration of 11.0 (9.0-16.0) days after symptom onset. Among these 55 patients, 43 had a longer duration until stool specimens were negative for viral RNA than for throat swabs, with a median delay of 2.0 (1.0-4.0) days. Results for only four (6.9%) urine samples were positive for viral nucleic acid out of 58 cases; viral RNA was still present in three patients' urine specimens after throat swabs were negative. Using a multiple linear regression model (F = 2.669, P = 0.044, and adjusted R = 0.122), the analysis showed that the CD4+ T lymphocyte count may help predict the duration of viral RNA detection in patients' stools (t = -2.699, P = 0.010). The duration of viral RNA detection from oropharyngeal swabs and fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (15 days vs. 8.0 days, respectively; t = 2.550, P = 0.013) and the duration of viral RNA detection in fecal samples in the glucocorticoid treatment group was longer than that in the non-glucocorticoid treatment group (20 days vs. 11 days, respectively; t = 4.631, P  0.05).@*CONCLUSIONS@#In brief, as the clearance of viral RNA in patients' stools was delayed compared to that in oropharyngeal swabs, it is important to identify viral RNA in feces during convalescence. Because of the delayed clearance of viral RNA in the glucocorticoid treatment group, glucocorticoids are not recommended in the treatment of COVID-19, especially for mild disease. The duration of RNA detection may relate to host cell immunity.


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Betacoronavirus , Genética , Técnicas de Laboratório Clínico , Infecções por Coronavirus , Diagnóstico , Genética , Reabilitação , Pandemias , Pneumonia Viral , Genética , Reabilitação , RNA Viral , Genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...