Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 588(Pt 8): 1281-92, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20194128

RESUMO

Synaptic activity in the medial prefrontal cortex (mPFC) is fundamental for higher cognitive functions such as working memory. The present study shows that small conductance (SK) calcium-activated potassium channels attenuate excitatory synaptic transmission at layer 2/3 and layer 5 inputs to layer 5 pyramidal neurons in the mPFC. SK channels are located postsynaptically at synapses where they are activated during synaptic transmission by calcium influx through NMDA receptors, L-type calcium channels, R-type calcium channels and by calcium release from IP(3)-sensitive stores. Removal of the SK channel-mediated shunt of synaptic transmission reveals significant NMDA receptor-mediated activation during basal synaptic transmission, which is greater at layer 5 inputs (approximately 30%) than at layer 2/3 inputs (approximately 20%). These findings show that interactions between NMDA receptors, SK channels and voltage-gated calcium channels play a critical role in regulating excitatory synaptic transmission in layer 5 pyramidal neurons in the mPFC.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Sinapses/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio Tipo R/fisiologia , Comunicação Celular , Feminino , Masculino , Modelos Animais , Células Piramidais/citologia , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/fisiologia
2.
Neuroscience ; 137(3): 781-94, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16289832

RESUMO

Classical mammalian transient receptor potential channels form non-selective cation channels that open in response to activation of phospholipase C-coupled metabotropic receptors, and are thought to play a key role in calcium homeostasis in non-excitable cells. Within the nervous system transient receptor potential channels are widely distributed but their physiological roles are not well understood. Here we show that in the rat lateral amygdala transient receptor potential channels mediate an excitatory synaptic response to glutamate. Activation of group I metabotropic glutamate receptors on pyramidal neurons in the lateral amygdala with either exogenous or synaptically released glutamate evokes an inward current at negative potentials with a current voltage relationship showing a region of negative slope and steep outward rectification. This current is blocked by inhibiting G protein function with GTP-beta-S, by inhibiting phospholipase C or by infusing transient receptor potential antibodies into lateral amygdala pyramidal neurons. Using RT-PCR and Western blotting we show that transient receptor potential 1, transient receptor potential 4 and transient receptor potential 5 are present in the lateral amygdala. Single cell PCR confirms the presence of transient receptor potential 1 and transient receptor potential 5 in pyramidal neurons and we show by co-immunoprecipitation that transient receptor potential 1 and transient receptor potential 5 co-assemble as a heteromultimers in the amygdala. These results show that in lateral amygdala pyramidal neurons synaptically released glutamate activates transient receptor potential channels, which we propose are likely to be heteromultimeric channels containing transient receptor potential 1 and transient receptor potential 5/transient receptor potential 4.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Canais de Cátion TRPC/fisiologia , Animais , Western Blotting , Canais de Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estimulação Elétrica , Eletrofisiologia , Feminino , Imunoprecipitação , Técnicas In Vitro , Masculino , Neurônios Aferentes/efeitos dos fármacos , Técnicas de Patch-Clamp , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/efeitos dos fármacos
3.
Physiol Rev ; 83(3): 803-34, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12843409

RESUMO

A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the underlying cause of some anxiety disorders in humans such as posttraumatic stress. The amygdaloid complex is a group of more than 10 nuclei that are located in the midtemporal lobe. These nuclei can be distinguished both on cytoarchitectonic and connectional grounds. Anatomical tract tracing studies have shown that these nuclei have extensive intranuclear and internuclear connections. The afferent and efferent connections of the amygdala have also been mapped in detail, showing that the amygdaloid complex has extensive connections with cortical and subcortical regions. Analysis of fear conditioning in rats has suggested that long-term synaptic plasticity of inputs to the amygdala underlies the acquisition and perhaps storage of the fear memory. In agreement with this proposal, synaptic plasticity has been demonstrated at synapses in the amygdala in both in vitro and in vivo studies. In this review, we examine the anatomical and physiological substrates proposed to underlie amygdala function.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/citologia , Animais , Condicionamento Psicológico , Medo/fisiologia , Humanos , Vias Neurais , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...