Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Virchows Arch ; 484(6): 1023-1027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355738

RESUMO

DICER1 tumor predisposition syndrome is a pleiotropic disorder that gives rise to various mainly pediatric-onset lesions. We report an extraskeletal chondroma (EC) of the great toe occurring in a child who, unusually, carries a germline "hotspot" missense DICER1 variant rather than the more usual loss-of-function (LOF) variant. No heterozygous LOF allele was identified in the EC. We demonstrate this variant impairs 5p cleavage of precursor-miRNA (pre-miRNA) and competes with wild-type (WT) DICER1 protein for pre-miRNA processing. These results suggest a mechanism through which a germline RNase IIIb variant could impair pre-miRNA processing without complete LOF of the WT DICER1 allele.


Assuntos
Condroma , RNA Helicases DEAD-box , Predisposição Genética para Doença , Ribonuclease III , Humanos , Ribonuclease III/genética , RNA Helicases DEAD-box/genética , Condroma/genética , Condroma/patologia , Criança , Masculino , Mutação em Linhagem Germinativa , Feminino , Dedos do Pé/patologia
2.
Genes Dev ; 37(15-16): 760-777, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37704377

RESUMO

The mRNA 3' poly(A) tail plays a critical role in regulating both mRNA translation and turnover. It is bound by the cytoplasmic poly(A) binding protein (PABPC), an evolutionarily conserved protein that can interact with translation factors and mRNA decay machineries to regulate gene expression. Mammalian PABPC1, the prototypical PABPC, is expressed in most tissues and interacts with eukaryotic translation initiation factor 4G (eIF4G) to stimulate translation in specific contexts. In this study, we uncovered a new mammalian PABPC, which we named neural PABP (neuPABP), as it is predominantly expressed in the brain. neuPABP maintains a unique architecture as compared with other PABPCs, containing only two RNA recognition motifs (RRMs) and maintaining a unique N-terminal domain of unknown function. neuPABP expression is activated in neurons as they mature during synaptogenesis, where neuPABP localizes to the soma and postsynaptic densities. neuPABP interacts with the noncoding RNA BC1, as well as mRNAs coding for ribosomal and mitochondrial proteins. However, in contrast to PABPC1, neuPABP does not associate with actively translating mRNAs in the brain. In keeping with this, we show that neuPABP has evolved such that it does not bind eIF4G and as a result fails to support protein synthesis in vitro. Taken together, these results indicate that mammals have expanded their PABPC repertoire in the brain and propose that neuPABP may support the translational repression of select mRNAs.


Assuntos
Fator de Iniciação Eucariótico 4G , Proteínas de Ligação a Poli(A) , Animais , Proteínas de Ligação a Poli(A)/genética , Neurônios , Encéfalo , Mamíferos
3.
EMBO J ; 42(21): e113933, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37621215

RESUMO

Deadenylation-dependent mRNA decapping and decay is the major cytoplasmic mRNA turnover pathway in eukaryotes. Many mRNA decapping and decay factors are associated with each other via protein-protein interaction motifs. For example, the decapping enzyme DCP2 and the 5'-3' exonuclease XRN1 interact with the enhancer of mRNA-decapping protein 4 (EDC4), a large scaffold that has been reported to stimulate mRNA decapping. mRNA decapping and decay factors are also found in processing bodies (P-bodies), evolutionarily conserved ribonucleoprotein granules that are often enriched with mRNAs targeted for decay, yet paradoxically are not required for mRNA decay to occur. Here, we show that disrupting the EDC4-XRN1 interaction or altering their stoichiometry inhibits mRNA decapping, with microRNA-targeted mRNAs being stabilized in a translationally repressed state. Importantly, we demonstrate that this concomitantly leads to larger P-bodies that are responsible for preventing mRNA decapping. Finally, we demonstrate that P-bodies support cell viability and prevent stress granule formation when XRN1 is limiting. Taken together, these data demonstrate that the interaction between XRN1 and EDC4 regulates P-body dynamics to properly coordinate mRNA decapping with 5'-3' decay in human cells.


Assuntos
Endorribonucleases , Corpos de Processamento , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Estabilidade de RNA/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
4.
NAR Cancer ; 5(3): zcad030, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37333613

RESUMO

The endoribonuclease DICER1 plays an essential role in the microRNA (miRNA) biogenesis pathway, cleaving precursor miRNA (pre-miRNA) stem-loops to generate mature single-stranded miRNAs. Germline pathogenic variants (GPVs) in DICER1 result in DICER1 tumor predisposition syndrome (DTPS), a mainly childhood-onset tumor susceptibility disorder. Most DTPS-causing GPVs are nonsense or frameshifting, with tumor development requiring a second somatic missense hit that impairs the DICER1 RNase IIIb domain. Interestingly, germline DICER1 missense variants that cluster in the DICER1 Platform domain have been identified in some persons affected by tumors that also associate with DTPS. Here, we demonstrate that four of these Platform domain variants prevent DICER1 from producing mature miRNAs and as a result impair miRNA-mediated gene silencing. Importantly, we show that in contrast to canonical somatic missense variants that alter DICER1 cleavage activity, DICER1 proteins harboring these Platform variants fail to bind to pre-miRNA stem-loops. Taken together, this work sheds light upon a unique subset of GPVs causing DTPS and provides new insights into how alterations in the DICER1 Platform domain can impact miRNA biogenesis.

5.
IEEE Comput Graph Appl ; 43(2): 69-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030834

RESUMO

Prolonged stays in the intensive care unit (ICU) cause difficulties in rehabilitation and other disorders for patients. This problem is exacerbated in the case of pediatric patients. The use of virtual reality can help with the lack of external stimuli and contribute as potential nonpharmacological therapies in some patient rehabilitation processes. To this end, we have developed a virtual reality application for use in the pediatric ICU as a tool for the treatment and rehabilitation of delirium. The tool consists of two applications: an immersive environment for a virtual reality headset used by the patient, and a web application managed by a therapist with which they can customize, control, adapt, and analyze in real time everything that happens in the patient's virtual world. Our application has been designed jointly with a university center and a hospital, and initial evaluations indicate the results to be promising.


Assuntos
Software , Realidade Virtual , Humanos , Criança , Unidades de Terapia Intensiva Pediátrica
6.
Trends Genet ; 39(5): 401-414, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863945

RESUMO

MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Genótipo , Genoma Humano , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
7.
Nucleic Acids Res ; 50(13): 7623-7636, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801873

RESUMO

Processing bodies (P-bodies) are ribonucleoprotein granules that contain mRNAs, RNA-binding proteins and effectors of mRNA turnover. While P-bodies have been reported to contain translationally repressed mRNAs, a causative role for P-bodies in regulating mRNA decay has yet to be established. Enhancer of decapping protein 4 (EDC4) is a core P-body component that interacts with multiple mRNA decay factors, including the mRNA decapping (DCP2) and decay (XRN1) enzymes. EDC4 also associates with the RNA endonuclease MARF1, an interaction that antagonizes the decay of MARF1-targeted mRNAs. How EDC4 interacts with MARF1 and how it represses MARF1 activity is unclear. In this study, we show that human MARF1 and XRN1 interact with EDC4 using analogous conserved short linear motifs in a mutually exclusive manner. While the EDC4-MARF1 interaction is required for EDC4 to inhibit MARF1 activity, our data indicate that the interaction with EDC4 alone is not sufficient. Importantly, we show that P-body architecture plays a critical role in antagonizing MARF1-mediated mRNA decay. Taken together, our study suggests that P-bodies can directly regulate mRNA turnover by sequestering an mRNA decay enzyme and preventing it from interfacing with and degrading targeted mRNAs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endorribonucleases/metabolismo , Estabilidade de RNA , Endorribonucleases/genética , Exorribonucleases/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
EMBO J ; 41(6): e108650, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156721

RESUMO

Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells. Remarkably, our transcriptome-wide analysis only detects marginal mRNA translation changes in PABP-depleted cells. In contrast, rapidly depleting PABP alters mRNA abundance and stability, albeit non-uniformly. Otherwise stable transcripts, including those encoding proteins with constitutive functions, are destabilized in PABP-depleted cells. In contrast, many unstable mRNAs, including those encoding proteins with regulatory functions, decay at similar rates in presence or absence of PABP. Moreover, PABP depletion-induced cell death can partially be suppressed by disrupting the mRNA decapping and 5'-3' decay machinery. Finally, we provide evidence that the LSM1-7 complex promotes decay of "stable" mRNAs in PABP-depleted cells. Taken together, these findings suggest that PABP plays an important role in preventing the untimely decay of select mRNA populations.


Assuntos
Perfilação da Expressão Gênica , Morte Celular , Humanos , RNA Mensageiro/genética
9.
BMC Public Health ; 22(1): 42, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991525

RESUMO

BACKGROUND: COVID-19 has developed into a worldwide pandemic which was accompanied by an «infodemic¼ consisting of much false and misleading information. To cope with these new challenges, health literacy plays an essential role. The aim of this paper is to present the findings of a trend study in Switzerland on corona-specific health literacy, the use of and trust in information sources during the COVID-19 pandemic, and their relationships. METHODS: Three online surveys each with approximately 1'020 individuals living in the German-speaking part of Switzerland (age ≥ 18 years) were conducted at different timepoints during the COVID-19 pandemic, namely spring, fall and winter 2020. For the assessment of corona-specific health literacy, a specifically developed instrument (HLS-COVID-Q22) was used. Descriptive, bivariate, and multivariate data analyses have been conducted. RESULTS: In general, a majority of the Swiss-German population reported sufficient corona-specific health literacy levels which increased during the pandemic: 54.6% participants in spring, 62.4% in fall and 63.3% in winter 2020 had sufficient corona-specific health literacy. Greatest difficulties concerned the appraisal of health information on the coronavirus. The most used information sources were television (used by 73.3% in spring, 70% in fall and 72.3% in winter) and the internet (used by 64.1, 64.8 and 66.5%). Although health professionals, health authorities and the info-hotline were rarely mentioned as sources for information on the coronavirus, respondents had greatest trust in them. On the other hand, social media were considered as the least trustworthy information sources. Respondents generally reporting more trust in the various information sources, tended to have higher corona-specific health literacy levels. CONCLUSIONS: Sufficient health literacy is an essential prerequisite for finding, understanding, appraising, and applying health recommendations, particularly in a situation where there is a rapid spread of a huge amount of information. The population should be supported in their capability in appraising the received information and in assessing the trustworthiness of different information sources.


Assuntos
COVID-19 , Letramento em Saúde , Adolescente , Estudos Transversais , Humanos , Pandemias , SARS-CoV-2 , Inquéritos e Questionários , Confiança
10.
Artigo em Inglês | MEDLINE | ID: mdl-34886479

RESUMO

Managing health information and services is difficult for nearly half of the population in Switzerland. Low health literacy has been shown to result in poorer health and health outcomes as well as a higher utilization of health services. To date, studies on health literacy in Switzerland have focused on a national level. However, Switzerland is a federal state with 26 cantons and a strongly decentralized health system. Therefore, the aim of this study is to understand how health literacy is distributed within the population of the canton of Zurich specifically, and to develop methods to determine whether an individual has a higher or lower level of health literacy. There were a total of 1000 participants in this representative study. Data was collected by an adapted version of the HLS-EU-Q47 and additional sociodemographic questions. The majority (56%) of the reported difficulties concerned accessing, understanding, appraising, and applying health information. The findings confirm that health literacy follows a social gradient, whereby financially deprived individuals and those with a low educational level report lower health literacy. The need for action to strengthen the health literacy of these population groups is therefore urgent. Interventions should pay particular attention to these vulnerable groups and tailor resolutions to their needs and preferences.


Assuntos
Letramento em Saúde , Adaptação Fisiológica , Escolaridade , Humanos , Inquéritos e Questionários , Suíça
11.
Methods Mol Biol ; 2209: 333-345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33201479

RESUMO

Experiments in cell cultures have been useful for investigating a number of RNA endonucleases. However, endonuclease decay intermediates are often challenging to study in cellulo, as decay intermediates are rapidly degraded by exoribonucleases. Thus, cell-free assays have been critical for assessing endonuclease kinetics. Here, we describe such an in vitro assay to analyze endoribonuclease activity using recombinant proteins and end-radiolabeled RNA oligonucleotides. Specifically, we detail a protocol for assaying the endoribonuclease activity and kinetics of the human MARF1 protein.


Assuntos
Proteínas de Ciclo Celular/química , Sistema Livre de Células , Endorribonucleases/química , Ensaios Enzimáticos/métodos , Humanos , Cinética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química
12.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510323

RESUMO

EDC4 is a core component of processing (P)-bodies that binds the DCP2 decapping enzyme and stimulates mRNA decay. EDC4 also interacts with mammalian MARF1, a recently identified endoribonuclease that promotes oogenesis and contains a number of RNA binding domains, including two RRMs and multiple LOTUS domains. How EDC4 regulates MARF1 action and the identity of MARF1 target mRNAs is not known. Our transcriptome-wide analysis identifies bona fide MARF1 target mRNAs and indicates that MARF1 predominantly binds their 3' UTRs via its LOTUS domains to promote their decay. We also show that a MARF1 RRM plays an essential role in enhancing its endonuclease activity. Importantly, we establish that EDC4 impairs MARF1 activity by preventing its LOTUS domains from binding target mRNAs. Thus, EDC4 not only serves as an enhancer of mRNA turnover that binds DCP2, but also as a repressor that binds MARF1 to prevent the decay of MARF1 target mRNAs.


Assuntos
Proteínas de Ciclo Celular , Endorribonucleases , Proteínas , Estabilidade de RNA/genética , RNA Mensageiro , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endorribonucleases/química , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
13.
J Cell Biol ; 219(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32597933

RESUMO

DNA replication is highly regulated by the ubiquitin system, which plays key roles upon stress. The ubiquitin-like modifier ISG15 (interferon-stimulated gene 15) is induced by interferons, bacterial and viral infection, and DNA damage, but it is also constitutively expressed in many types of cancer, although its role in tumorigenesis is still largely elusive. Here, we show that ISG15 localizes at the replication forks, in complex with PCNA and the nascent DNA, where it regulates DNA synthesis. Indeed, high levels of ISG15, intrinsic or induced by interferon-ß, accelerate DNA replication fork progression, resulting in extensive DNA damage and chromosomal aberrations. This effect is largely independent of ISG15 conjugation and relies on ISG15 functional interaction with the DNA helicase RECQ1, which promotes restart of stalled replication forks. Additionally, elevated ISG15 levels sensitize cells to cancer chemotherapeutic treatments. We propose that ISG15 up-regulation exposes cells to replication stress, impacting genome stability and response to genotoxic drugs.


Assuntos
Neoplasias Ósseas/metabolismo , Quebra Cromossômica , Citocinas/metabolismo , Replicação do DNA , DNA de Neoplasias/biossíntese , Osteossarcoma/metabolismo , Ubiquitinas/metabolismo , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Citocinas/genética , Dano ao DNA , DNA de Neoplasias/genética , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Fatores de Tempo , Ubiquitinas/genética
14.
J Clin Invest ; 130(3): 1479-1490, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31805011

RESUMO

BACKGROUNDDICER1 is the only miRNA biogenesis component associated with an inherited tumor syndrome, featuring multinodular goiter (MNG) and rare pediatric-onset lesions. Other susceptibility genes for familial forms of MNG likely exist.METHODSWhole-exome sequencing of a kindred with early-onset MNG and schwannomatosis was followed by investigation of germline pathogenic variants that fully segregated with the disease. Genome-wide analyses were performed on 13 tissue samples from familial and nonfamilial DGCR8-E518K-positive tumors, including MNG, schwannomas, papillary thyroid cancers (PTCs), and Wilms tumors. miRNA profiles of 4 tissue types were compared, and sequencing of miRNA, pre-miRNA, and mRNA was performed in a subset of 9 schwannomas, 4 of which harbor DGCR8-E518K.RESULTSWe identified c.1552G>A;p.E518K in DGCR8, a microprocessor component located in 22q, in the kindred. The variant identified is a somatic hotspot in Wilms tumors and has been identified in 2 PTCs. Copy number loss of chromosome 22q, leading to loss of heterozygosity at the DGCR8 locus, was found in all 13 samples harboring c.1552G>A;p.E518K. miRNA profiling of PTCs, MNG, schwannomas, and Wilms tumors revealed a common profile among E518K hemizygous tumors. In vitro cleavage demonstrated improper processing of pre-miRNA by DGCR8-E518K. MicroRNA and RNA profiling show that this variant disrupts precursor microRNA production, impacting populations of canonical microRNAs and mirtrons.CONCLUSIONWe identified DGCR8 as the cause of an unreported autosomal dominant mendelian tumor susceptibility syndrome: familial multinodular goiter with schwannomatosis.FUNDINGCanadian Institutes of Health Research, Compute Canada, Alex's Lemonade Stand Foundation, the Mia Neri Foundation for Childhood Cancer, Cassa di Sovvenzioni e Risparmio fra il Personale della Banca d'Italia, and the KinderKrebsInitiative Buchholz/Holm-Seppensen.


Assuntos
Predisposição Genética para Doença , Bócio Nodular/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Neurilemoma/genética , Neurofibromatoses/genética , Proteínas de Ligação a RNA/genética , Neoplasias Cutâneas/genética , Substituição de Aminoácidos , Criança , Cromossomos Humanos Par 22/genética , Feminino , Dosagem de Genes , Estudo de Associação Genômica Ampla , Bócio Nodular/patologia , Células HEK293 , Humanos , Masculino , Neurilemoma/patologia , Neurofibromatoses/patologia , Neoplasias Cutâneas/patologia , Sequenciamento do Exoma
15.
Adv Exp Med Biol ; 1203: 149-164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31811634

RESUMO

Most eukaryotic mRNAs maintain a 5' cap structure and 3' poly(A) tail, cis-acting elements that are often separated by thousands of nucleotides. Nevertheless, multiple paradigms exist where mRNA 5' and 3' termini interact with each other in order to regulate mRNA translation and turnover. mRNAs recruit translation initiation factors to their termini, which in turn physically interact with each other. This physical bridging of the mRNA termini is known as the "closed loop" model, with years of genetic and biochemical evidence supporting the functional synergy between the 5' cap and 3' poly(A) tail to enhance mRNA translation initiation. However, a number of examples exist of "non-canonical" 5'-3' communication for cellular and viral RNAs that lack 5' cap structures and/or poly(A) tails. Moreover, in several contexts, mRNA 5'-3' communication can function to repress translation. Overall, we detail how various mRNA 5'-3' interactions play important roles in posttranscriptional regulation, wherein depending on the protein factors involved can result in translational stimulation or repression.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Células Eucarióticas , Regulação da Expressão Gênica , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo
16.
EMBO J ; 38(13): e102477, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268603

RESUMO

Metazoan micro(mi) RNAs guide Argonaute proteins to their targets via perfect pairing to the seed region, located near the 5' end of the miRNA. In this issue of The EMBO Journal, Sheu-Gruttadauria et al report the crystal structure of human Argonaute 2 in complex with both a miRNA and target RNA and show that miRNA 3' supplementary nucleotides can increase target affinity and may contribute more to miRNA-mediated silencing than is currently appreciated.


Assuntos
Proteínas Argonautas , MicroRNAs , Animais , Humanos , Nucleotídeos
17.
N Engl J Med ; 380(19): 1834-1842, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31067372

RESUMO

Mesenchymal hamartoma of the liver (MHL) is a benign tumor affecting children that is characterized by a primitive myxoid stroma with cystically dilated bile ducts. Alterations involving chromosome 19q13 are a recurrent underlying cause of MHL; these alterations activate the chromosome 19 microRNA cluster (C19MC). Other cases remain unexplained. We describe two children with MHLs that harbored germline DICER1 pathogenic variants. Analysis of tumor tissue from one of the children revealed two DICER1 "hits." Mutations in DICER1 dysregulate microRNAs, mimicking the effect of the activation of C19MC. Our data suggest that MHL is a new phenotype of DICER1 syndrome. (Funded by the Canadian Institutes of Health Research and others.).


Assuntos
Cromossomos Humanos Par 19 , RNA Helicases DEAD-box/genética , Mutação em Linhagem Germinativa , Hamartoma/genética , Hepatopatias/genética , MicroRNAs/metabolismo , Síndromes Neoplásicas Hereditárias/genética , Ribonuclease III/genética , Pré-Escolar , Feminino , Predisposição Genética para Doença , Hamartoma/diagnóstico por imagem , Hamartoma/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Hepatopatias/diagnóstico por imagem , Hepatopatias/patologia , Masculino , Mesoderma , Linhagem , Fenótipo
18.
J Biol Chem ; 294(18): 7445-7459, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30898877

RESUMO

RNA polymerase III (Pol III) is an essential enzyme responsible for the synthesis of several small noncoding RNAs, a number of which are involved in mRNA translation. Recessive mutations in POLR3A, encoding the largest subunit of Pol III, cause POLR3-related hypomyelinating leukodystrophy (POLR3-HLD), characterized by deficient central nervous system myelination. Identification of the downstream effectors of pathogenic POLR3A mutations has so far been elusive. Here, we used CRISPR-Cas9 to introduce the POLR3A mutation c.2554A→G (p.M852V) into human cell lines and assessed its impact on Pol III biogenesis, nuclear import, DNA occupancy, transcription, and protein levels. Transcriptomic profiling uncovered a subset of transcripts vulnerable to Pol III hypofunction, including a global reduction in tRNA levels. The brain cytoplasmic BC200 RNA (BCYRN1), involved in translation regulation, was consistently affected in all our cellular models, including patient-derived fibroblasts. Genomic BC200 deletion in an oligodendroglial cell line led to major transcriptomic and proteomic changes, having a larger impact than those of POLR3A mutations. Upon differentiation, mRNA levels of the MBP gene, encoding myelin basic protein, were significantly decreased in POLR3A-mutant cells. Our findings provide the first evidence for impaired Pol III transcription in cellular models of POLR3-HLD and identify several candidate effectors, including BC200 RNA, having a potential role in oligodendrocyte biology and involvement in the disease.


Assuntos
Regulação para Baixo/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação , RNA Polimerase III/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Genes Recessivos , Células HeLa , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-29959194

RESUMO

MicroRNAs (miRNAs) posttranscriptionally regulate gene expression by repressing protein synthesis and exert a broad influence over development, physiology, adaptation, and disease. Over the past two decades, great strides have been made toward elucidating how miRNAs go about shutting down messenger RNA (mRNA) translation and promoting mRNA decay.


Assuntos
Inativação Gênica , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/metabolismo , Redes Reguladoras de Genes , Humanos , Domínios Proteicos
20.
Nucleic Acids Res ; 46(22): 12008-12021, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30364987

RESUMO

Meiosis arrest female 1 (MARF1) is a cytoplasmic RNA binding protein that is essential for meiotic progression of mouse oocytes, in part by limiting retrotransposon expression. MARF1 is also expressed in somatic cells and tissues; however, its mechanism of action has yet to be investigated. Human MARF1 contains a NYN-like domain, two RRMs and eight LOTUS domains. Here we provide evidence that MARF1 post-transcriptionally silences targeted mRNAs. MARF1 physically interacts with the DCP1:DCP2 mRNA decapping complex but not with deadenylation machineries. Importantly, we provide a 1.7 Å resolution crystal structure of the human MARF1 NYN domain, which we demonstrate is a bona fide endoribonuclease, the activity of which is essential for the repression of MARF1-targeted mRNAs. Thus, MARF1 post-transcriptionally represses gene expression by serving as both an endoribonuclease and as a platform that recruits the DCP1:DCP2 decapping complex to targeted mRNAs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Endorribonucleases/metabolismo , Interferência de RNA , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Endorribonucleases/química , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Clivagem do RNA , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores/química , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...