Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 25: e00428, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32071894

RESUMO

The undesirable environmental impacts of inappropriate application of pesticides have brought about research into new matrices for controlled release of pesticides. Porous starch citrate biopolymer was designed for the release of carbofuran in this experiment and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Thermo-Gravimetric Analysis (TGA) for functional group, surface morphology and thermal stability properties respectively. The SEM revealed highly stabilized porous starch citrate biopolymers with porous structures and gradients suitable for controlled release studies. The transmittance bands at 3347, 1714 and 1073 cm-1 for OH, CO and COC-[bond, double bond]-- stretching vibrations further confirms the successful synthesis of the biopolymer. TGA showed an increase in the thermal stability after citric acid modification with one-step decomposition from 290 ᵒC to 500 ᵒC. From Korsemeyer-Peppas model, the carbofuran-porous starch citrate (CBFN/PRS/STH/CTRT) followed a lower diffusion release model with gradual increment in all the quantity of carbofuran loaded. An accelerated rate of diffusion percentage was seen in direct application of carbofuran. Egg hatch and mortality of juveniles were recorded on daily basis for seven days. Direct application of carbofuran (CBFN/DRT) and carbofuran-porous starch citrate biopolymer gave the best results with significant (p < 0.05) reduction in egg hatch and higher percentage mortality. The rate of release of carbofuran from the starch citrate bio polymer matrix was significantly lower than the direct application, and in spite of the slow rate of release, higher juvenile mortality and reduction in egg hatch was achieved.

2.
J Med Food ; 16(10): 878-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24066943

RESUMO

Studies suggest that the traditional applications of Kigelia pinnata leaves have beneficial effects against oxidative stress-mediated diseases and cancers. The pulverized dried leaves of K. pinnata were extracted with hexane, ethyl acetate, and methanol sequentially, and the crude extracts were fractionated by silica gel column chromatography with solvent gradient of increasing polarity. 3-hydro-4,8-phytene, trans-phytol, (9Z,12Z)-methyl octadeca-9,12-dienoate, and two oil fractions were obtained. The chemical compositions of chromatographic fractions were determined using gas chromatography-mass spectroscopy. The structure elucidations of the isolated compounds were based on FTIR, MS, and NMR spectral data analyses. These along with the crude extracts were examined for their antioxidant activities using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and 2,2-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) assays. Total phenolic contents were also determined. The crude extracts and purified compounds were evaluated on the rhabdomyosarcoma human cancer cell for their cytotoxicity using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assays. The methanol extract was richer in phenolics and was most potent as antioxidant and cytotoxic agent among all the substances tested. Among the fractions and pure compounds, the two oil fractions showed more cytotoxicity potency, with IC50s of 143.4±0.5 and 147.9±1.3 ng/mL, which is more significant than the reference standard, cyclophosphamide (165.6±1.0 ng/mL). 3-hydro-4,8-phytene showed lower antioxidant and cytotoxicity potential (IC50=1818±5.2 µg/mL and 171.7±0.8 ng/mL, respectively). Trans-phytol did not show a high cytotoxic power (IC50=769.8±4.3 ng/mL). The comparatively high cytotoxicity index of (9Z, 12Z)-methyl octadeca-9,12-dienoate (IC50=153.3±0.1 ng/mL) indicated that it may be one of the principal cytotoxic agent in the ethyl acetate extract. These results suggest that the leaves of K. pinnata possess tumor cytotoxic potential and could be part of a drug combination for future cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Bignoniaceae/química , Neoplasias/fisiopatologia , Extratos Vegetais/farmacologia , Antineoplásicos/química , Antioxidantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Extratos Vegetais/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...