Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(4): 1201-1212, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38319296

RESUMO

Structurally and conformationally diverse databases are needed to train accurate neural networks or kernel-based potentials capable of exploring the complex free energy landscape of flexible functional organic molecules. Curating such databases for species beyond "simple" drug-like compounds or molecules composed of well-defined building blocks (e.g., peptides) is challenging as it requires thorough chemical space mapping and evaluation of both chemical and conformational diversities. Here, we introduce the OFF-ON (organic fragments from organocatalysts that are non-modular) database, a repository of 7869 equilibrium and 67,457 nonequilibrium geometries of organic compounds and dimers aimed at describing conformationally flexible functional organic molecules, with an emphasis on photoswitchable organocatalysts. The relevance of this database is then demonstrated by training a local kernel regression model on a low-cost semiempirical baseline and comparing it with a PBE0-D3 reference for several known catalysts, notably the free energy surfaces of exemplary photoswitchable organocatalysts. Our results demonstrate that the OFF-ON data set offers reliable predictions for simulating the conformational behavior of virtually any (photoswitchable) organocatalyst or organic compound composed of H, C, N, O, F, and S atoms, thereby opening a computationally feasible route to explore complex free energy surfaces in order to rationalize and predict catalytic behavior.


Assuntos
Redes Neurais de Computação , Peptídeos , Peptídeos/química , Entropia , Compostos Orgânicos , Bases de Dados Factuais
2.
J Org Chem ; 87(14): 8849-8857, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35762705

RESUMO

A highly appealing strategy to modulate a catalyst's activity and/or selectivity in a dynamic and noninvasive way is to incorporate a photoresponsive unit into a catalytically competent molecule. However, the description of the photoinduced conformational or structural changes that alter the catalyst's intrinsic reactivity is often reduced to a handful of intuitive static representations, which can struggle to capture the complexity of flexible organocatalysts. Here, we show how a comprehensive exploration of the free energy landscape of N-alkylated azobenzene-tethered piperidine catalysts is essential to unravel the conformational characteristics of each configurational state and explain the experimentally observed reactivity trends. Mapping the catalysts' conformational space highlights the existence of false ON or OFF states that lower their switching ability. Our findings expose the challenges associated with the realization of a reversible steric shielding for the photocontrol of Brønsted basicity of piperidine photoswitchable organocatalysts.


Assuntos
Piperidinas , Catálise
3.
J Chem Theory Comput ; 18(3): 1467-1479, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35179897

RESUMO

The application of machine learning to theoretical chemistry has made it possible to combine the accuracy of quantum chemical energetics with the thorough sampling of finite-temperature fluctuations. To reach this goal, a diverse set of methods has been proposed, ranging from simple linear models to kernel regression and highly nonlinear neural networks. Here we apply two widely different approaches to the same, challenging problem: the sampling of the conformational landscape of polypeptides at finite temperature. We develop a local kernel regression (LKR) coupled with a supervised sparsity method and compare it with a more established approach based on Behler-Parrinello type neural networks. In the context of the LKR, we discuss how the supervised selection of the reference pool of environments is crucial to achieve accurate potential energy surfaces at a competitive computational cost and leverage the locality of the model to infer which chemical environments are poorly described by the DFTB baseline. We then discuss the relative merits of the two frameworks and perform Hamiltonian-reservoir replica-exchange Monte Carlo sampling and metadynamics simulations, respectively, to demonstrate that both frameworks can achieve converged and transferable sampling of the conformational landscape of complex and flexible biomolecules with comparable accuracy and computational cost.


Assuntos
Simulação de Dinâmica Molecular , Redes Neurais de Computação , Aprendizado de Máquina , Conformação Molecular , Oligopeptídeos/química
4.
Chem Sci ; 12(20): 6879-6889, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-34123316

RESUMO

Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol-1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.

5.
Chemistry ; 27(1): 419-426, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32991023

RESUMO

Azobenzene and its derivatives are one of the most widespread molecular scaffolds used in a range of modern applications, as well as in fundamental research. After photoexcitation, azo-based photoswitches revert back to the most stable isomer on a timescale ( t 1 / 2 ) that determines the range of potential applications. Attempts to bring t 1 / 2 to extreme values prompted the development of azobenzene and azoheteroarene derivatives that either rebalance the E- and Z-isomer stabilities, or exploit unconventional thermal isomerization mechanisms. In the former case, one successful strategy has been the creation of macrocycle strain, which tends to impact the E/Z stability asymmetrically, and thus significantly modify t 1 / 2 . On the bright side, bridged derivatives have shown an improved optical switching owing to the higher quantum yields and absence of degradation. However, in most (if not all) cases, bridged derivatives display a reversed thermal stability (more stable Z-isomer), and smaller t 1 / 2 than the acyclic counterparts, which restricts their potential interest to applications requiring a fast forward and backwards switch. In this paper, the impact of alkyl bridges on the thermal stability of phenyl-azoheteroarenes is investigated by using computational methods, and it is revealed that it is indeed possible to combine such improved photoswitching characteristics while preserving the regular thermal stability (more stable E-isomer), and increased t 1 / 2 values under the appropriate connectivity and bridge length.

6.
J Chem Theory Comput ; 16(5): 3084-3094, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32212720

RESUMO

This work combines a machine learning potential energy function with a modular enhanced sampling scheme to obtain statistically converged thermodynamical properties of flexible medium-size organic molecules at high ab initio level. We offer a modular environment in the python package MORESIM that allows custom design of replica exchange simulations with any level of theory including ML-based potentials. Our specific combination of Hamiltonian and reservoir replica exchange is shown to be a powerful technique to accelerate enhanced sampling simulations and explore free energy landscapes with a quantum chemical accuracy unattainable otherwise (e.g., DLPNO-CCSD(T)/CBS quality). This engine is used to demonstrate the relevance of accessing the ab initio free energy landscapes of molecules whose stability is determined by a subtle interplay between variations in the underlying potential energy and conformational entropy (i.e., a bridged asymmetrically polarized dithiacyclophane and a widely used organocatalyst) both in the gas phase and in solution (implicit solvent).

7.
Chimia (Aarau) ; 73(12): 983-989, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31883548

RESUMO

In this account, we demonstrate how statistical learning approaches can be leveraged across a range of different quantum chemical areas to transform the scaling, nature, and complexity of the problems that we are tackling. Selected examples illustrate the power brought by kernel-based approaches in the large-scale screening of homogeneous catalysis, the prediction of fundamental quantum chemical properties and the free-energy landscapes of flexible organic molecules. While certainly non-exhaustive, these examples provide an intriguing glimpse into our own research efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...