Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(22): 3153-3165, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37565816

RESUMO

Mutations in genes encoding nuclear pore proteins (NUPs) lead to the development of steroid-resistant nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). However, the precise molecular mechanisms by which NUP dysfunction contributes to podocyte injury preceding FSGS remain unclear. The tightly regulated activity of Yes-associated protein (YAP) and WW-domain-containing transcription regulator 1 (TAZ), the transcriptional effectors of the Hippo pathway, is crucial for podocytes and the maintenance of the glomerular filter. In this study, we investigate the impact of NUPs on the regulation of YAP/TAZ nuclear import and activity in podocytes. In unbiased interactome studies using quantitative label-free mass spectrometry, we identify the FSGS disease gene products NUP107, NUP133, NUP205, and Exportin-5 (XPO5) as components of YAP and TAZ protein complexes in podocytes. Moreover, we demonstrate that NUP205 is essential for YAP/TAZ nuclear import. Consistently, both the nuclear interaction of YAP/TAZ with TEA domain transcription factor 1 and their transcriptional activity were dependent on NUP205 expression. Additionally, we elucidate a regulatory feedback mechanism whereby YAP activity is modulated in response to TAZ-mediated NUP205 expression. In conclusion, this study establishes a connection between the FSGS disease protein NUP205 and the activity of the transcriptional regulators and Hippo effectors YAP and TAZ and it proposes a potential pathological role of YAP/TAZ dysregulation in podocytes of patients with pathogenic NUP205 variants.


Assuntos
Glomerulosclerose Segmentar e Focal , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glomerulosclerose Segmentar e Focal/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Carioferinas , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Fosfoproteínas/genética , RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
2.
Cancers (Basel) ; 15(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37509263

RESUMO

Hypomorphic mutations in MRN complex genes are frequently found in cancer, supporting their role as oncosuppressors. However, unlike canonical oncosuppressors, MRN proteins are often overexpressed in tumor tissues, where they actively work to counteract DSBs induced by both oncogene-dependent RS and radio-chemotherapy. Moreover, at the same time, MRN genes are also essential genes, since the constitutive KO of each component leads to embryonic lethality. Therefore, even though it is paradoxical, MRN genes may work as oncosuppressive, oncopromoting, and essential genes. In this review, we discussed how alterations in the MRN complex impact the physiopathology of cancer, in light of our recent discoveries on the gene-dosage-dependent effect of NBS1 in Medulloblastoma. These updates aim to understand whether MRN complex can be realistically used as a prognostic/predictive marker and/or as a therapeutic target for the treatment of cancer patients in the future.

3.
EMBO J ; 41(22): e109711, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929179

RESUMO

Several kinds of stress promote the formation of three-stranded RNA:DNA hybrids called R-loops. Insufficient clearance of these structures promotes genomic instability and DNA damage, which ultimately contribute to the establishment of cancer phenotypes. Paraspeckle assemblies participate in R-loop resolution and preserve genome stability, however, the main determinants of this mechanism are still unknown. This study finds that in Multiple Myeloma (MM), AATF/Che-1 (Che-1), an RNA-binding protein fundamental to transcription regulation, interacts with paraspeckles via the lncRNA NEAT1_2 (NEAT1) and directly localizes on R-loops. We systematically show that depletion of Che-1 produces a marked accumulation of RNA:DNA hybrids. We provide evidence that such failure to resolve R-loops causes sustained activation of a systemic inflammatory response characterized by an interferon (IFN) gene expression signature. Furthermore, elevated levels of R-loops and of mRNA for paraspeckle genes in patient cells are linearly correlated with Multiple Myeloma progression. Moreover, increased interferon gene expression signature in patients is associated with markedly poor prognosis. Taken together, our study indicates that Che-1/NEAT1 cooperation prevents excessive inflammatory signaling in Multiple Myeloma by facilitating the clearance of R-loops. Further studies on different cancer types are needed to test if this mechanism is ubiquitously conserved and fundamental for cell homeostasis.


Assuntos
Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Estruturas R-Loop , Mieloma Múltiplo/genética , Paraspeckles , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferons/genética , Proteínas Repressoras/metabolismo , Proteínas Reguladoras de Apoptose/genética
4.
Neuropathol Appl Neurobiol ; 48(6): e12837, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35839783

RESUMO

AIMS: Inherited or somatic mutations in the MRE11, RAD50 and NBN genes increase the incidence of tumours, including medulloblastoma (MB). On the other hand, MRE11, RAD50 and NBS1 protein components of the MRN complex are often overexpressed and sometimes essential in cancer. In order to solve the apparent conundrum about the oncosuppressive or oncopromoting role of the MRN complex, we explored the functions of NBS1 in an MB-prone animal model. MATERIALS AND METHODS: We generated and analysed the monoallelic or biallelic deletion of the Nbn gene in the context of the SmoA1 transgenic mouse, a Sonic Hedgehog (SHH)-dependent MB-prone animal model. We used normal and tumour tissues from these animal models, primary granule cell progenitors (GCPs) from genetically modified animals and NBS1-depleted primary MB cells, to uncover the effects of NBS1 depletion by RNA-Seq, by biochemical characterisation of the SHH pathway and the DNA damage response (DDR) as well as on the growth and clonogenic properties of GCPs. RESULTS: We found that monoallelic Nbn deletion increases SmoA1-dependent MB incidence. In addition to a defective DDR, Nbn+/- GCPs show increased clonogenicity compared to Nbn+/+ GCPs, dependent on an enhanced Notch signalling. In contrast, full NbnKO impairs MB development both in SmoA1 mice and in an SHH-driven tumour allograft. CONCLUSIONS: Our study indicates that Nbn is haploinsufficient for SHH-MB development whereas full NbnKO is epistatic on SHH-driven MB development, thus revealing a gene dosage-dependent effect of Nbn inactivation on SHH-MB development.


Assuntos
Proteínas de Ciclo Celular , Neoplasias Cerebelares , Proteínas de Ligação a DNA , Meduloblastoma , Animais , Proteínas de Ciclo Celular/genética , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas de Ligação a DNA/genética , Dosagem de Genes , Genes Essenciais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos
5.
Oncogene ; 40(43): 6143-6152, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508175

RESUMO

MYCN drives aggressive behavior and refractoriness to chemotherapy, in several tumors. Since MYCN inactivation in clinical settings is not achievable, alternative vulnerabilities of MYCN-driven tumors need to be explored to identify more effective and less toxic therapies. We previously demonstrated that PARP inhibitors enhance MYCN-induced replication stress and promote mitotic catastrophe, counteracted by CHK1. Here, we showed that PARP and CHK1 inhibitors synergized to induce death in neuroblastoma cells and in primary cultures of SHH-dependent medulloblastoma, their combination being more effective in MYCN amplified and MYCN overexpressing cells compared to MYCN non-amplified cells. Although the MYCN amplified IMR-32 cell line carrying the p.Val2716Ala ATM mutation showed the highest sensitivity to the drug combination, this was not related to ATM status, as indicated by CRISPR/Cas9-based correction of the mutation. Suboptimal doses of the CHK1 inhibitor MK-8776 plus the PARP inhibitor olaparib led to a MYCN-dependent accumulation of DNA damage and cell death in vitro and significantly reduced the growth of four in vivo models of MYCN-driven tumors, without major toxicities. Our data highlight the combination of PARP and CHK1 inhibitors as a new potential chemo-free strategy to treat MYCN-driven tumors, which might be promptly translated into clinical trials.


Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Sinergismo Farmacológico , Feminino , Amplificação de Genes/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Kidney Int Rep ; 6(5): 1368-1378, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34013115

RESUMO

INTRODUCTION: Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. METHODS: We identified 4 patients with FAT1-associated disease, performed clinical and genetic characterization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. RESULTS: Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heterogeneous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. CONCLUSION: A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease.

7.
PLoS One ; 15(11): e0238612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137122

RESUMO

BACKGROUND: Rapid and extensive testing of large parts of the population and specific subgroups is crucial for proper management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and decision-making in times of a pandemic outbreak. However, point-of-care (POC) testing in places such as emergency units, outpatient clinics, airport security points or the entrance of any public building is a major challenge. The need for thermal cycling and nucleic acid isolation hampers the use of standard PCR-based methods for this purpose. METHODS: To avoid these obstacles, we tested PCR-independent methods for the detection of SARS-CoV-2 RNA from primary material (nasopharyngeal swabs) including reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific high-sensitivity enzymatic reporter unlocking (SHERLOCK). RESULTS: Whilst specificity of standard RT-LAMP assays appears to be satisfactory, sensitivity does not reach the current gold-standard quantitative real-time polymerase chain reaction (qPCR) assays yet. We describe a novel multiplexed RT-LAMP approach and validate its sensitivity on primary samples. This approach allows for fast and reliable identification of infected individuals. Primer optimization and multiplexing helps to increase sensitivity significantly. In addition, we directly compare and combine our novel RT-LAMP assays with SHERLOCK. CONCLUSION: In summary, this approach reveals one-step multiplexed RT-LAMP assays as a prime-option for the development of easy and cheap POC test kits.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/diagnóstico , RNA Viral/metabolismo , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/virologia , Humanos , Nasofaringe/virologia , Pandemias , Pneumonia Viral/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade
8.
Calcif Tissue Int ; 107(6): 603-610, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32875378

RESUMO

We compared the effects of a nitrogen-containing bisphosphonate (N-BP), zoledronic acid (ZA), and an anti-mouse RANKL antibody (anti-mRANKL Ab) on the bone tissue pathology of a transgenic mouse model of human fibrous dysplasia (FD). For comparison, we also reviewed the histological samples of a child with McCune-Albright syndrome (MAS) treated with Pamidronate for 3 years. EF1α-GsαR201C mice with FD-like lesions in the tail vertebrae were treated with either 0.2 mg/kg of ZA at day 0, 7, and 14 or with 300 µg/mouse of anti-mRANKL Ab at day 0 and 21. All mice were monitored by Faxitron and histological analysis was performed at day 42. ZA did not affect the progression of the radiographic phenotype in EF1α-GsαR201C mice. FD-like lesions in the ZA group showed the persistence of osteoclasts, easily detectable osteoclast apoptotic activity and numerous "giant osteoclasts". In contrast, in the anti-mRANKL Ab-treated mice, osteoclasts were markedly reduced/absent, the radiographic phenotype reverted and the FD-like lesions were extensively replaced by newly formed bone. Numerous "giant osteoclasts" were also detected in the samples of the child with MAS. This study supports the hypothesis that osteoclasts per se, independently of their resorptive activity, are essential for development and expansion of FD lesions.


Assuntos
Displasia Fibrosa Óssea/tratamento farmacológico , Células Gigantes , Osteoclastos , Ácido Zoledrônico/uso terapêutico , Animais , Difosfonatos , Modelos Animais de Doenças , Displasia Fibrosa Óssea/patologia , Camundongos , Camundongos Transgênicos
9.
Front Oncol ; 10: 919, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587828

RESUMO

The DNA damage response (DDR) is a complex signaling network that is activated upon genotoxic stress. It determines cellular fate by either activating cell cycle arrest or initiating apoptosis and thereby ensures genomic stability. The Apoptosis Antagonizing Transcription Factor (AATF/Che-1), an RNA polymerase II-interacting transcription factor and known downstream target of major DDR kinases, affects DDR signaling by inhibiting p53-mediated transcription of pro-apoptotic genes and promoting cell cycle arrest through various pathways instead. Specifically, AATF was shown to inhibit p53 expression at the transcriptional level and repress its pro-apoptotic activity by direct binding to p53 protein and transactivation of anti-apoptotic genes. Solid and hematological tumors of various organs exploit this function by overexpressing AATF. Both copy number gains and high expression levels of AATF were associated with worse prognosis or relapse of malignant tumors. Recently, a number of studies have enabled insights into the molecular mechanisms by which AATF affects both DDR and proliferation. AATF was found to directly localize to sites of DNA damage upon laser ablation and interact with DNA repair proteins. In addition, depletion of AATF resulted in increased DNA damage and decrease of both proliferative activity and genotoxic tolerance. Interestingly, considering the role of ribosomal stress in the regulation of p53, more recent work established AATF as ribosomal RNA binding protein and enabled insights into its role as an important factor for rRNA processing and ribosome biogenesis. This Mini Review summarizes recent findings on AATF and its important role in the DDR, malignancy, and ribosome biogenesis.

10.
Nucleic Acids Res ; 48(11): 5891-5906, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421830

RESUMO

Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , DNA Ribossômico/genética , Genes de RNAr/genética , RNA Polimerase I/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Dano ao DNA , DNA Ribossômico/metabolismo , Homeostase , Humanos , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Ribossomos/metabolismo
11.
Front Oncol ; 10: 560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457828

RESUMO

Extensive molecular characterization of human colorectal cancer (CRC) via Next Generation Sequencing (NGS) indicated that genetic or epigenetic dysregulation of a relevant, but limited, number of molecular pathways typically occurs in this tumor. The molecular picture of the disease is significantly complicated by the frequent occurrence of individually rare genetic aberrations, which expand tumor heterogeneity. Inter- and intratumor molecular heterogeneity is very likely responsible for the remarkable individual variability in the response to conventional and target-driven first-line therapies, in metastatic CRC (mCRC) patients, whose median overall survival remains unsatisfactory. Implementation of an extensive molecular characterization of mCRC in the clinical routine does not yet appear feasible on a large scale, while multigene panel sequencing of most commonly mutated oncogene/oncosuppressor hotspots is more easily achievable. Here, we report that clinical multigene panel sequencing performed for anti-EGFR therapy predictive purposes in 639 formalin-fixed paraffin-embedded (FFPE) mCRC specimens revealed previously unknown pairwise mutation associations and a high proportion of cases carrying actionable gene mutations. Most importantly, a simple principal component analysis directed the delineation of a new molecular stratification of mCRC patients in eight groups characterized by non-random, specific mutational association patterns (MAPs), aggregating samples with similar biology. These data were validated on a The Cancer Genome Atlas (TCGA) CRC dataset. The proposed stratification may provide great opportunities to direct more informed therapeutic decisions in the majority of mCRC cases.

12.
Sci Rep ; 9(1): 19623, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873117

RESUMO

Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.


Assuntos
Diferenciação Celular , Cerebelo/metabolismo , Proteínas Hedgehog , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Receptor Smoothened , Animais , Cerebelo/citologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
13.
iScience ; 22: 466-476, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31835171

RESUMO

The cellular response to hypoxia is crucial to organismal survival, and hypoxia-inducible factors (HIF) are the key mediators of this response. HIF-signaling is central to many human diseases and mediates longevity in the nematode. Despite the rapidly increasing knowledge on RNA-binding proteins (RBPs), little is known about their contribution to hypoxia-induced cellular adaptation. We used RNA interactome capture (RIC) in wild-type Caenorhabditis elegans and vhl-1 loss-of-function mutants to fill this gap. This approach identifies more than 1,300 nematode RBPs, 270 of which can be considered novel RBPs. Interestingly, loss of vhl-1 modulates the RBPome. This difference is not primarily explained by protein abundance suggesting differential RNA-binding. Taken together, our study provides a global view on the nematode RBPome and proteome as well as their modulation by HIF-signaling. The resulting RBP atlas is also provided as an interactive online data mining tool (http://shiny.cecad.uni-koeln.de:3838/celegans_rbpome).

14.
PeerJ ; 7: e7972, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741787

RESUMO

BACKGROUND: Genetic testing for BRCA1/2 germline mutations in hereditary breast/ovarian cancer patients requires screening for single nucleotide variants, small insertions/deletions and large genomic rearrangements (LGRs). These studies have long been run by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). The recent introduction of next-generation sequencing (NGS) platforms dramatically improved the speed and the efficiency of DNA testing for nucleotide variants, while the possibility to correctly detect LGRs by this mean is still debated. The purpose of this study was to establish whether and to which extent the development of an analytical algorithm could help us translating NGS sequencing via an Ion Torrent PGM platform into a tool suitable to identify LGRs in hereditary breast-ovarian cancer patients. METHODS: We first used NGS data of a group of three patients (training set), previously screened in our laboratory by conventional methods, to develop an algorithm for the calculation of the dosage quotient (DQ) to be compared with the Ion Reporter (IR) analysis. Then, we tested the optimized pipeline with a consecutive cohort of 85 uncharacterized probands (validation set) also subjected to MLPA analysis. Characterization of the breakpoints of three novel BRCA1 LGRs was obtained via long-range PCR and direct sequencing of the DNA products. RESULTS: In our cohort, the newly defined DQ-based algorithm detected 3/3 BRCA1 LGRs, demonstrating 100% sensitivity and 100% negative predictive value (NPV) (95% CI [87.6-99.9]) compared to 2/3 cases detected by IR (66.7% sensitivity and 98.2% NPV (95% CI [85.6-99.9])). Interestingly, DQ and IR shared 12 positive results, but exons deletion calls matched only in five cases, two of which confirmed by MLPA. The breakpoints of the 3 novel BRCA1 deletions, involving exons 16-17, 21-22 and 20, have been characterized. CONCLUSIONS: Our study defined a DQ-based algorithm to identify BRCA1 LGRs using NGS data. Whether confirmed on larger data sets, this tool could guide the selection of samples to be subjected to MLPA analysis, leading to significant savings in time and money.

15.
Oncogenesis ; 8(11): 64, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685809

RESUMO

Medulloblastoma (MB) is the most common malignant childhood brain tumor. About 30% of all MBs belong to the I molecular subgroup, characterized by constitutive activation of the Sonic Hedgehog (Hh) pathway. The Hh pathway is involved in several fundamental processes during embryogenesis and in adult life and its deregulation may lead to cerebellar tumorigenesis. Indeed, Hh activity must be maintained via a complex network of activating and repressor signals. One of these repressor signals is KCASH2, belonging to the KCASH family of protein, which acts as negative regulators of the Hedgehog signaling pathway during cerebellar development and differentiation. KCASH2 leads HDAC1 to degradation, allowing hyperacetylation and inhibition of transcriptional activity of Gli1, the main effector of the Hh pathway. In turn, the KCASH2 loss leads to persistent Hh activity and eventually tumorigenesis. In order to better characterize the physiologic role and modulation mechanisms of KCASH2, we have searched through a proteomic approach for new KCASH2 interactors, identifying Potassium Channel Tetramerization Domain Containing 15 (KCTD15). KCTD15 is able to directly interact with KCASH2, through its BTB/POZ domain. This interaction leads to increase KCASH2 stability which implies a reduction of the Hh pathway activity and a reduction of Hh-dependent MB cells proliferation. Here we report the identification of KCTD15 as a novel player in the complex network of regulatory proteins, which modulate Hh pathway, this could be a promising new target for therapeutic approach against MB.

16.
Sci Rep ; 9(1): 11071, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363146

RESUMO

AATF is a central regulator of the cellular outcome upon p53 activation, a finding that has primarily been attributed to its function as a transcription factor. Recent data showed that AATF is essential for ribosome biogenesis and plays a role in rRNA maturation. AATF has been implicated to fulfil this role through direct interaction with rRNA and was identified in several RNA-interactome capture experiments. Here, we provide a first comprehensive analysis of the RNA bound by AATF using CLIP-sequencing. Interestingly, this approach shows predominant binding of the 45S pre-ribosomal RNA precursor molecules. Furthermore, AATF binds to mRNAs encoding for ribosome biogenesis factors as well as snoRNAs. These findings are complemented by an in-depth analysis of the protein interactome of AATF containing a large set of proteins known to play a role in rRNA maturation with an emphasis on the protein-RNA-complexes known to be required for the generation of the small ribosomal subunit (SSU). In line with this finding, the binding sites of AATF within the 45S rRNA precursor localize in close proximity to the SSU cleavage sites. Consequently, our multilayer analysis of the protein-RNA interactome of AATF reveals this protein to be an important hub for protein and RNA interactions involved in ribosome biogenesis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Precursores de RNA/metabolismo
17.
J Am Soc Nephrol ; 30(4): 564-576, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30867249

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) are fundamental regulators of cellular biology that affect all steps in the generation and processing of RNA molecules. Recent evidence suggests that regulation of RBPs that modulate both RNA stability and translation may have a profound effect on the proteome. However, regulation of RBPs in clinically relevant experimental conditions has not been studied systematically. METHODS: We used RNA interactome capture, a method for the global identification of RBPs to characterize the global RNA-binding proteome (RBPome) associated with polyA-tailed RNA species in murine ciliated epithelial cells of the inner medullary collecting duct. To study regulation of RBPs in a clinically relevant condition, we analyzed hypoxia-associated changes of the RBPome. RESULTS: We identified >1000 RBPs that had been previously found using other systems. In addition, we found a number of novel RBPs not identified by previous screens using mouse or human cells, suggesting that these proteins may be specific RBPs in differentiated kidney epithelial cells. We also found quantitative differences in RBP-binding to mRNA that were associated with hypoxia versus normoxia. CONCLUSIONS: These findings demonstrate the regulation of RBPs through environmental stimuli and provide insight into the biology of hypoxia-response signaling in epithelial cells in the kidney. A repository of the RBPome and proteome in kidney tubular epithelial cells, derived from our findings, is freely accessible online, and may contribute to a better understanding of the role of RNA-protein interactions in kidney tubular epithelial cells, including the response of these cells to hypoxia.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Proteoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Hipóxia Celular/fisiologia , Cílios/metabolismo , Células HEK293 , Humanos , Camundongos , Ligação Proteica
18.
Cell Death Dis ; 9(9): 895, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166519

RESUMO

MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.


Assuntos
Proteína Homóloga a MRE11/antagonistas & inibidores , Proteína Homóloga a MRE11/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Pirimidinonas/farmacologia , Tionas/farmacologia , Células 3T3 , Células A549 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neuroblastoma/patologia , Prognóstico , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
BMC Med Genet ; 18(1): 53, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28499369

RESUMO

BACKGROUND: Renal cell carcinoma is among the most prevalent malignancies. It is generally sporadic. However, genetic studies of rare familial forms have led to the identification of mutations in causative genes such as VHL and FLCN. Mutations in the FLCN gene are the cause of Birt-Hogg-Dubé syndrome, a rare tumor syndrome which is characterized by the combination of renal cell carcinoma, pneumothorax and skin tumors. METHODS: Using Sanger sequencing we identify a heterozygous splice-site mutation in FLCN in lymphocyte DNA of a patient suffering from renal cell carcinoma. Furthermore, both tumor DNA and DNA from a metastasis are analyzed regarding this mutation. The pathogenic effect of the sequence alteration is confirmed by minigene assays and the biochemical consequences on the protein are examined using TALEN-mediated transgenesis in cultured cells. RESULTS: Here we describe an FLCN mutation in a 55-year-old patient who presented himself with progressive weight loss, bilateral kidney cysts and renal tumors. He and members of his family had a history of recurrent pneumothorax during the last few decades. Histology after tumor nephrectomy showed a mixed kidney cancer consisting of elements of a chromophobe renal cell carcinoma and dedifferentiated small cell carcinoma component. Subsequent FLCN sequencing identified an intronic c.1177-5_-3delCTC alteration that most likely affected the correct splicing of exon 11 of the FLCN gene. We demonstrate skipping of exon 11 to be the consequence of this mutation leading to a shift in the reading frame and the insertion of a premature stop codon. Interestingly, the truncated protein was still expressed both in cell culture and in tumor tissue, though it was strongly destabilized and its subcellular localization differed from wild-type FLCN. Both, altered protein stability and subcellular localization could be partly reversed by blocking proteasomal and lysosomal degradation. CONCLUSIONS: Identification of disease-causing mutations in BHD syndrome requires the analysis of intronic sequences. However, biochemical validation of the consecutive alterations of the resulting protein is especially important in these cases. Functional characterization of the disease-causing mutations in BHD syndrome may guide further research for the development of novel diagnostic and therapeutic strategies.


Assuntos
Carcinoma de Células Renais/genética , Genes Supressores de Tumor , Neoplasias Renais/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Splicing de RNA , Proteínas Supressoras de Tumor/genética , Carcinoma de Células Renais/diagnóstico por imagem , Humanos , Neoplasias Renais/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
20.
Am J Pathol ; 186(5): 1128-39, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27105734

RESUMO

Mitochondrial fusion is essential for maintenance of mitochondrial function and requires the prohibitin ring complex subunit prohibitin-2 (PHB2) at the mitochondrial inner membrane. Loss of the stomatin/PHB/flotillin/HflK/C (SPFH) domain containing protein PHB2 causes mitochondrial dysfunction and defective mitochondria-mediated signaling, which is implicated in a variety of human diseases, including progressive renal disease. Here, we provide evidence of additional, extra-mitochondrial functions of this membrane-anchored protein. Immunofluorescence and immunogold labeling detected PHB2 at mitochondrial membranes and at the slit diaphragm, a specialized cell junction at the filtration slit of glomerular podocytes. PHB2 coprecipitated with podocin, another SPFH domain-containing protein, essential for the assembly of the slit diaphragm protein-lipid supercomplex. Consistent with an evolutionarily conserved extra-mitochondrial function, the ortholog of PHB2 in Caenorhabditis elegans was also not restricted to mitochondria but colocalized with the mechanosensory complex that requires the podocin ortholog MEC2 for assembly. Knockdown of phb-2 partially phenocopied loss of mec-2 in touch neurons of the nematode, resulting in impaired gentle touch sensitivity. Collectively, these data indicate that, besides its established role in mitochondria, PHB2 may have an additional function in conserved protein-lipid complexes at the plasma membrane.


Assuntos
Mitocôndrias/fisiologia , Podócitos/fisiologia , Proteínas Repressoras/deficiência , Animais , Proteínas de Caenorhabditis elegans , Células Cultivadas , Células HEK293 , Humanos , Junções Intercelulares/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/fisiopatologia , Membranas Mitocondriais/fisiologia , Membranas Mitocondriais/ultraestrutura , Podócitos/ultraestrutura , Proibitinas , Proteinúria/etiologia , Proteinúria/fisiopatologia , Tato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...