Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(17): 11692-11701, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682656

RESUMO

In a combined experimental and theoretical study we characterize dissociative electron attachment (DEA) to, and electronically excited states of, Fe(CO)5. Both are relevant for electron-induced degradation of Fe(CO)5. The strongest DEA channel is cleavage of one metal-ligand bond that leads to production of Fe(CO)4-. High-resolution spectra of Fe(CO)4- reveal fine structures at the onset of vibrational excitation channels. Effective range R-matrix theory successfully reproduces these structures as well as the dramatic rise of the cross section at very low energies and reveals that virtual state scattering dominates low-energy DEA in Fe(CO)5 and that intramolecular vibrational redistribution (IVR) plays an essential role. The virtual state hypothesis receives further experimental support from the rapid rise of the elastic cross section at very low energies and intense threshold peaks in vibrational excitation cross sections. The IVR hypothesis is confirmed by our measurements of kinetic energy distributions of the fragment ions, which are narrow (∼0.06 eV) and peak at low energies (∼0.025 eV), indicating substantial vibrational excitation in the Fe(CO)4- fragment. Rapid IVR is also revealed by the yield of thermal electrons, observed in two-dimensional (2D) electron energy loss spectroscopy. We further measured mass-resolved DEA spectra at higher energies, up to 12 eV, and compared the bands observed there to resonances revealed by the spectra of vibrational excitation cross sections. Dipole-allowed and dipole/spin forbidden electronic transitions in Fe(CO)5-relevant for neutral dissociation by electron impact-are probed using electron energy loss spectroscopy and time-dependent density functional theory calculations. Very good agreement between theory and experiment is obtained, permitting assignment of the observed bands.

2.
Nat Commun ; 8(1): 1544, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146898

RESUMO

The interaction of antiprotons with low-energy positronium atoms is a fundamental three-body problem whose significance is its utility for formation of antihydrogen. Particular importance resides in understanding processes involving excited positronium states. Until recently such studies were performed using classical techniques. However, they become inapplicable in the low-energy domain. Here we report the results of comprehensive quantum calculations, which include initial excited positronium states with principal quantum numbers up to n i = 5. Contrary to expectation from earlier work, there are only muted increases in the cross-sections for antihydrogen formation for n i > 3. We interpret this in terms of quantum suppression of the reaction at higher angular momenta. Furthermore, the cross-sections for elastic scattering are around two orders of magnitude higher, which we attribute to the degeneracy of the positronium states. We outline some experimental consequences of our results.

3.
Phys Rev Lett ; 112(24): 243201, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996087

RESUMO

We employ the impulse approximation for a description of positronium-atom scattering. Our analysis and calculations of Ps-Kr and Ps-Ar collisions provide a theoretical explanation of the similarity between the cross sections for positronium scattering and electron scattering for a range of atomic and molecular targets observed by S. J. Brawley et al. [Science 330, 789 (2010)].

4.
J Chem Phys ; 140(18): 184313, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24832276

RESUMO

Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A(')-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.


Assuntos
DNA/química , Hidrogênio/química , Modelos Químicos , Modelos Moleculares , Uracila/química , Água/química , Simulação por Computador , DNA/efeitos da radiação , Elétrons , Conformação Molecular/efeitos da radiação , Uracila/efeitos da radiação
5.
J Chem Phys ; 136(18): 184301, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22583281

RESUMO

Low-energy dissociative electron attachment (DEA) to the CF(2)Cl(2) and CF(3)Cl molecules in a water cluster environment is investigated theoretically. Calculations are performed for the water trimer and water hexamer. It is shown that the DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster, and that this cross section grows as the number of water molecules in the cluster increases. This growth is explained by a trapping effect that is due to multiple scattering by water molecules while the electron is trapped in the cluster environment. The trapping increases the resonance lifetime and the negative ion survival probability. This confirms qualitatively existing experiments on electron attachment to the CF(2)Cl(2) molecule placed on the surface of H(2)O ice. The DEA cross sections are shown to be very sensitive to the position of the attaching molecule within the cluster and the orientation of the electron beam relative to the cluster.

6.
J Chem Phys ; 134(6): 064303, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21322676

RESUMO

Rate coefficients k(T) for dissociative electron attachment (DEA) to molecules in many cases exhibit a more or less strong rise with increasing temperature T (the electron temperature T(e) and the molecular temperature T(G) are assumed to be in thermal equilibrium, i.e., T = T(e) = T(G)). This rise is frequently modeled by the Arrhenius equation k(T) = k(A) exp[-E(a)∕(k(B)T)], and an activation energy E(a) is deduced from fits to the experimental data k(T). This behavior reflects the presence of an energy barrier for the anion on its path to the dissociated products. In a recent paper [J. Kopyra, J. Wnorowska, M. Forys, and I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)] it was suggested that the size of the rate coefficients for DEA reactions at room temperature exhibits an exponential dependence on the activation energy, i.e., k(E(a); T ≈ 300 K) = k(1) exp[-E(a)∕E(0)]. More recent experimental data for molecules with high barriers [T. M. Miller, J. F. Friedman, L. C. Schaffer, and A. A. Viggiano, J. Chem. Phys. 131, 084302 (2009)] are compatible with such a correlation. We investigate the validity and the possible origin of this dependence by analyzing the results of R-matrix calculations for temperature-dependent rate coefficients of exothermic DEA processes with intermediate barrier toward dissociation. These include results for model systems with systematically varied barrier height as well as results of molecule-specific calculations for CH(3)Cl, CH(3)Br, CF(3)Cl, and CH(2)Cl(2) (activation energies above 0.2 eV) involving appropriate molecular parameters. A comparison of the experimental and theoretical results for the considered class of molecules (halogenated alkanes) supports the idea that the exponential dependence of k(T = 300 K) on the activation energy reflects a general phenomenon associated with Franck-Condon factors for getting from the initial neutral vibrational levels to the dissociating final anion state in a direct DEA process. Cases are discussed for which the proposed relation does not apply.

7.
J Phys Chem A ; 114(3): 1474-84, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20039623

RESUMO

Results from a joint experimental study of electron attachment to dichlorodifluoromethane (CCl(2)F(2)) molecules in the gas phase are reported. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for formation of the dominant anion Cl(-) was measured over the energy range 0.001-1.8 eV at the gas temperature T(G) = 300 K. It exhibits cusp structure at thresholds for vibrational excitation of the nu(3)(a(1)) mode due to interaction with the attachment channels. With reference to the thermal attachment rate coefficient k(T = 300 K) = 2.2(8) x 10(-9) cm(3) s(-1) (fitted average from several data), a new highly resolved absolute attachment cross section for T(G) = 300 K was determined. Partial cross sections for formation of the anions Cl(-), Cl(2)(-), F(-), ClF(-), and CCl(2)F(-) were measured over the range 0-12 eV, using three different electron beam experiments of medium energy resolution. The dependence of the attachment rate coefficient k(T(e);T(G) = 300 K) on electron temperature T(e) was calculated over the range 50-15 000 K, based on a newly constructed total cross section for anion formation at T(G) = 300 K. R-matrix calculations for Cl(-) production have been carried out for comparison with the experimental data. The R-matrix results are in line with the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3)() and on the vibrational temperature. Furthermore, the cross section for vibrational excitation of the nu(3) mode has been computed.

8.
Phys Rev Lett ; 99(25): 253202, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18233518

RESUMO

Using the high resolution laser photoelectron attachment method, we demonstrate that the cross section for F- formation due to electron capture by F2(X{1}Sigma{g}{+}) molecules at very low energies exhibits p-wave threshold behavior. This finding confirms the theoretical expectation that low-energy attachment to F2 proceeds through the F2{-}(2Sigma{u}{+}) p-wave shape resonance in contrast with previous experimental claims for s-wave threshold behavior.

9.
J Chem Phys ; 124(15): 154316, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16674235

RESUMO

In a joint experimental and theoretical effort, we have studied dissociative electron attachment (DEA) to the CF3Br molecule at electron energies below 2 eV. Using two variants of the laser photoelectron attachment method with a thermal gas target (T(G) = 300 K), we measured the energy dependent yield for Br- formation over the range E = 3-1200 meV with resolutions of about 3 meV (E < 200 meV) and 35 meV. At the onsets for excitation of one and two quanta for the C-Br stretching mode nu3, downward cusps are detected. With reference to the recommended thermal (300 K) attachment rate coefficient k(A)(CF3Br) = 1.4 x 10(-8) cm3 s(-1), absolute cross sections have been determined for Br- formation. In addition, we studied Br- and (CF3Br)Br- formations with a seeded supersonic target beam (10% CF3Br in helium carrier gas, with a stagnation pressure of 1-4 bars and nozzle temperatures of 300 and 600 K) and found prominent structure in the anion yields due to cluster formation. Using the microwave pulse radiolysis swarm technique, allowing for controlled variation of the electron temperature by microwave heating, we studied the dependence of the absolute DEA rate coefficient on the mean electron energy E over the range of 0.04-2 eV at gas temperatures T(G) ranging from 173 to 600 K. For comparison with the experimental results, semiempirical resonance R-matrix calculations have been carried out. The input for the theory includes the known energetic and structural parameters of the neutral molecule and its anion; the parameters of the resonant anion curves are chosen with reference to the known thermal rate coefficient for the DEA process. For the gas temperature T(G) = 300 K, good overall agreement of the theoretical DEA cross section with the experimental results is observed; moreover, rate coefficients for Br- formation due to Rydberg electron transfer, calculated with both the experimental and the theoretical DEA cross sections, are found to agree with the previously reported absolute experimental values. At T(G) = 300 K, satisfactory agreement is also found between the calculated and experimental attachment rate coefficients for mean electron energies E = 0.04-2 eV. The strong increase of the measured rate coefficients with rising gas temperature, however, could be only partially recovered by the R-matrix results. The differences may result from the influence of thermal excitations of other vibrational modes not included in the theory.

10.
Phys Rev Lett ; 87(12): 123003, 2001 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-11580504

RESUMO

We formulate the boundary conditions near the atomic nucleus for solving the Pauli equation, based on the analytic solution of the Dirac equation for a Coulomb potential. We then integrate the Pauli equation using an effective potential that is adjusted to reproduce Dirac R-matrix scattering phase shifts, and find the (3)P(o)(1) resonance contribution to the photodetachment cross section of Cs-. Our photodetachment cross sections agree with recent experiments by Scheer et al. [Phys. Rev. Lett. 80, 684 (1998)] after tuning the resonance position by 2.4 meV. We also provide angle-differential photodetachment cross sections and the corresponding asymmetry parameter beta near the Cs(6s) threshold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...