Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadi2671, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335286

RESUMO

The adult intestine is a regionalized organ, whose size and cellular composition are adjusted in response to nutrient status. This involves dynamic regulation of intestinal stem cell (ISC) proliferation and differentiation. How nutrient signaling controls cell fate decisions to drive regional changes in cell-type composition remains unclear. Here, we show that intestinal nutrient adaptation involves region-specific control of cell size, cell number, and differentiation. We uncovered that activation of mTOR complex 1 (mTORC1) increases ISC size in a region-specific manner. mTORC1 activity promotes Delta expression to direct cell fate toward the absorptive enteroblast lineage while inhibiting secretory enteroendocrine cell differentiation. In aged flies, the ISC mTORC1 signaling is deregulated, being constitutively high and unresponsive to diet, which can be mitigated through lifelong intermittent fasting. In conclusion, mTORC1 signaling contributes to the ISC fate decision, enabling regional control of intestinal cell differentiation in response to nutrition.


Assuntos
Mucosa Intestinal , Intestinos , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Mucosa Intestinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Drosophila
2.
J Endocrinol ; 244(1): 189-200, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31697642

RESUMO

Enhanced beta cell glycolytic and oxidative metabolism are necessary for glucose-induced insulin secretion. While several microRNAs modulate beta cell homeostasis, miR-375 stands out as it is highly expressed in beta cells where it regulates beta cell function, proliferation and differentiation. As glucose metabolism is central in all aspects of beta cell functioning, we investigated the role of miR-375 in this process using human and rat islets; the latter being an appropriate model for in-depth investigation. We used forced expression and repression of mR-375 in rat and human primary islet cells followed by analysis of insulin secretion and metabolism. Additionally, miR-375 expression and glucose-induced insulin secretion were compared in islets from rats at different developmental ages. We found that overexpressing of miR-375 in rat and human islet cells blunted insulin secretion in response to glucose but not to α-ketoisocaproate or KCl. Further, miR-375 reduced O2 consumption related to glycolysis and pyruvate metabolism, but not in response to α-ketoisocaproate. Concomitantly, lactate production was augmented suggesting that glucose-derived pyruvate is shifted away from mitochondria. Forced miR-375 expression in rat or human islets increased mRNA levels of pyruvate dehydrogenase kinase-4, but decreased those of pyruvate carboxylase and malate dehydrogenase1. Finally, reduced miR-375 expression was associated with maturation of fetal rat beta cells and acquisition of glucose-induced insulin secretion function. Altogether our findings identify miR-375 as an efficacious regulator of beta cell glucose metabolism and of insulin secretion, and could be determinant to functional beta cell developmental maturation.


Assuntos
Glucose/metabolismo , Secreção de Insulina/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Adulto , Animais , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar
3.
Cell Death Dis ; 10(8): 566, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332188

RESUMO

In an adult healthy liver, hepatocytes are in a quiescent stage unless a physical injury, such as ablation, or a toxic attack occur. Indeed, to maintain their crucial organismal homeostatic role, the damaged or remaining hepatocytes will start proliferating to restore their functional mass. One of the limiting conditions for cell proliferation is amino-acid availability, necessary both for the synthesis of proteins important for cell growth and division, and for the activation of the mTOR pathway, known for its considerable role in the regulation of cell proliferation. The overarching aim of our present work was to investigate the role of amino acids in the regulation of the switch between quiescence and growth of adult hepatocytes. To do so we used non-confluent primary adult rat hepatocytes as a model of partially ablated liver. We discovered that the absence of amino acids induces in primary rat hepatocytes the entrance in a quiescence state together with an increase in Drosha protein, which does not involve the mTOR pathway. Conversely, Drosha knockdown allows the hepatocytes, quiescent after amino-acid deprivation, to proliferate again. Further, hepatocyte proliferation appears to be independent of miRNAs, the canonical downstream partners of Drosha. Taken together, our observations reveal an intriguing non-canonical action of Drosha in the control of growth regulation of adult hepatocytes responding to a nutritional strain, and they may help to design novel preventive and/or therapeutic approaches for hepatic failure.


Assuntos
Aminoácidos/deficiência , Proliferação de Células/genética , Hepatócitos/metabolismo , Falência Hepática/metabolismo , Ribonuclease III/metabolismo , Animais , Autofagia/genética , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Masculino , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Ratos , Ratos Wistar , Ribonuclease III/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...