Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(1): 159-174, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962698

RESUMO

Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative potential. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested. Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuroprotective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue engineering approach for neuroprotective and neuro-regenerative treatments.


Assuntos
Células-Tronco Mesenquimais , Doenças do Sistema Nervoso , Humanos , Secretoma , Engenharia Tecidual , Terapia Baseada em Transplante de Células e Tecidos , Doenças do Sistema Nervoso/terapia
2.
Front Cell Dev Biol ; 11: 1274462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020931

RESUMO

Cell outer membranes contain glycosphingolipids and protein receptors, which are integrated into glycoprotein domains, known as lipid rafts, which are involved in a variety of cellular processes, including receptor-mediated signal transduction and cellular differentiation process. In this study, we analyzed the lipidic composition of human Dental Pulp-Derived Stem Cells (DPSCs), and the role of lipid rafts during the multilineage differentiation process. The relative quantification of lipid metabolites in the organic fraction of DPSCs, performed by Nuclear Magnetic Resonance (NMR) spectroscopy, showed that mono-unsaturated fatty acids (MUFAs) were the most representative species in the total pool of acyl chains, compared to polyunsatured fatty acids (PUFAs). In addition, the stimulation of DPSCs with different culture media induces a multilineage differentiation process, determining changes in the gangliosides pattern. To understand the functional role of lipid rafts during multilineage differentiation, DPSCs were pretreated with a typical lipid raft affecting agent (MßCD). Subsequently, DPSCs were inducted to differentiate into osteoblast, chondroblast and adipoblast cells with specific media. We observed that raft-affecting agent MßCD prevented AKT activation and the expression of lineage-specific mRNA such as OSX, PPARγ2, and SOX9 during multilineage differentiation. Moreover, this compound significantly prevented the tri-lineage differentiation induced by specific stimuli, indicating that lipid raft integrity is essential for DPSCs differentiation. These results suggest that lipid rafts alteration may affect the signaling pathway activated, preventing multilineage differentiation.

3.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443720

RESUMO

Despite decades of research, no therapies are available to halt or slow down the course of neuro-degenerative disorders. Most of the drugs developed to fight neurodegeneration are aimed to alleviate symptoms, but none has proven adequate in altering the course of the pathologies. Cell therapy has emerged as an intriguing alternative to the classical pharmacological approach. Cell therapy consists of the transplantation of stem cells that can be obtained from various embryonal and adult tissues. Whereas the former holds notable ethical issue, adult somatic stem cells can be obtained without major concerns. However, most adult stem cells, such as those derived from the bone marrow, are committed toward the mesodermal lineage, and hence need to be reprogrammed to induce the differentiation into the neurons. The discovery of neural crest stem cells in the dental pulp, both in adults' molar and in baby teeth (dental pulp stem cells and stem cells from human exfoliated deciduous teeth, respectively) prompted researchers to investigate their utility as therapy in nervous system disorders. In this review, we recapitulate the advancements on the application of these stem cells in preclinical models of neurodegenerative diseases, highlighting differences and analogies in their maintenance, differentiation, and potential clinical application.


Assuntos
Células-Tronco Mesenquimais , Adulto , Humanos , Polpa Dentária , Células-Tronco , Sistema Nervoso , Dente Decíduo
4.
Biomedicines ; 10(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551867

RESUMO

Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.

5.
Biomedicines ; 10(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35625792

RESUMO

As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.

6.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917954

RESUMO

Glioblastoma (GBM) is known to be the most common and lethal primary malignant brain tumor. Therapies against this neoplasia have a high percentage of failure, associated with the survival of self-renewing glioblastoma stem cells (GSCs), which repopulate treated tumors. In addition, despite new radical surgery protocols and the introduction of new anticancer drugs, protocols for treatment, and technical advances in radiotherapy, no significant improvement in the survival rate for GBMs has been realized. Thus, novel antitarget therapies could be used in conjunction with standard radiochemotherapy approaches. Targeted therapy, indeed, may address specific targets that play an essential role in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Significant cellular heterogeneity and the hierarchy with GSCs showing a therapy-resistant phenotype could explain tumor recurrence and local invasiveness and, therefore, may be a target for new therapies. Therefore, the forced differentiation of GSCs may be a promising new approach in GBM treatment. This article provides an updated review of the current standard and experimental therapies for GBM, as well as an overview of the molecular characteristics of GSCs, the mechanisms that activate resistance to current treatments, and a new antitumor strategy for treating GSCs for use as therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Biomarcadores , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/patologia , Diferenciação Celular , Autorrenovação Celular , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/etiologia , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...