Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693558

RESUMO

Using a mouse model of ischemic stroke, this study characterizes stroke-induced lymphangiogenesis at the cribriform plate (CP). While blocking CP lymphangiogenesis with a VEGFR-3 inhibitor improves stroke outcome, administration of VEGF-C induced larger brain infarcts. Abstract: Cerebrospinal fluid (CSF), antigens, and antigen-presenting cells drain from the central nervous system (CNS) into lymphatic vessels near the cribriform plate and dural meningeal lymphatics. However, the pathological roles of these lymphatic vessels surrounding the CNS during stroke are not well understood. Using a mouse model of ischemic stroke, transient middle cerebral artery occlusion (tMCAO), we show that stroke induces lymphangiogenesis near the cribriform plate. Interestingly, lymphangiogenesis is restricted to lymphatic vessels at the cribriform plate and downstream cervical lymph nodes, without affecting the conserved network of lymphatic vessels in the dura. Cribriform plate lymphangiogenesis peaks at day 7 and regresses by day 14 following tMCAO and is regulated by VEGF-C/VEGFR-3. These newly developed lymphangiogenic vessels transport CSF and immune cells to the cervical lymph nodes. Inhibition of VEGF-C/VEGFR-3 signaling using a blocker of VEGFR-3 prevented lymphangiogenesis and led to improved stroke outcomes at earlier time points but had no effects at later time points following stroke. Administration of VEGF-C after tMCAO did not further increase post-stroke lymphangiogenesis, but instead induced larger brain infarcts. The differential roles for VEGFR-3 inhibition and VEGF-C in regulating stroke pathology call into question recent suggestions to use VEGF-C therapeutically for stroke.

2.
Front Immunol ; 14: 1233908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662908

RESUMO

In recent decades there has been a large focus on understanding the mechanisms of peripheral immune cell infiltration into the central nervous system (CNS) in neuroinflammatory diseases. This intense research led to several immunomodulatory therapies to attempt to regulate immune cell infiltration at the blood brain barrier (BBB), the choroid plexus (ChP) epithelium, and the glial barrier. The fate of these infiltrating immune cells depends on both the neuroinflammatory environment and their type-specific interactions with innate cells of the CNS. Although the fate of the majority of tissue infiltrating immune cells is death, a percentage of these cells could become tissue resident immune cells. Additionally, key populations of immune cells can possess the ability to "drain" out of the CNS and act as messengers reporting signals from the CNS toward peripheral lymphatics. Recent data supports that the meningeal lymphatic system is involved not just in fluid homeostatic functions in the CNS but also in facilitating immune cell migration, most notably dendritic cell migration from the CNS to the meningeal borders and to the draining cervical lymph nodes. Similar to the peripheral sites, draining immune cells from the CNS during neuroinflammation have the potential to coordinate immunity in the lymph nodes and thus influence disease. Here in this review, we will evaluate evidence of immune cell drainage from the brain via the meningeal lymphatics and establish the importance of this in animal models and humans. We will discuss how targeting immune cells at sites like the meningeal lymphatics could provide a new mechanism to better provide treatment for a variety of neurological conditions.


Assuntos
Sistema Nervoso Central , Vasos Linfáticos , Animais , Humanos , Sistema Linfático , Movimento Celular , Encéfalo
3.
J Neurosci ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35882557

RESUMO

The complex pathophysiology of post-traumatic brain damage might need a polypharmacological strategy with a combination of drugs that target multiple, synergistic mechanisms. We currently tested a combination of apocynin (curtails formation of reactive oxygen species; ROS), tert-butylhydroquinone (promotes disposal of ROS), and salubrinal (prevents endoplasmic reticulum stress) following a moderate traumatic brain injury (TBI) induced by controlled cortical impact in adult mice. Adult mice of both sexes treated with the above tri-combo showed alleviated motor and cognitive deficits, attenuated secondary lesion volume, and decreased oxidative DNA damage. Concomitantly, tri-combo treatment regulated post-TBI inflammatory response by decreasing the infiltration of T cells and neutrophils and activation of microglia in both sexes. Interestingly, sexual dimorphism was seen in the case of TBI-induced microgliosis and infiltration of macrophages in the tri-combo treated mice. Moreover, the tri-combo treatment prevented TBI-induced white matter volume loss in both sexes. The beneficial effects of tri-combo treatment were long-lasting and were also seen in aged mice. Thus, the present study supports the tri-combo treatment to curtail oxidative stress and endoplasmic reticulum stress concomitantly as a therapeutic strategy to improve TBI outcomes.SIGNIFICANCE STATEMENTOf the several mechanisms that contribute to TBI pathophysiology, oxidative stress, endoplasmic reticulum (ER) stress, and inflammation play a major role. The present study shows the therapeutic potential of a combination of apocynin, tert-butylhydroquinone, and salubrinal to prevent oxidative stress and ER stress and the interrelated inflammatory response in mice subjected to TBI. The beneficial effects of the tri-combo include alleviation of TBI-induced motor and cognitive deficits and lesion volume. The neuroprotective effects of the tri-combo are also linked to its ability to prevent TBI-induced white matter damage. Importantly, neuroprotection by the tri-combo treatment was observed to be not dependent on sex or age. Our data demonstrate that a polypharmacological strategy is efficacious after TBI.

4.
Transl Res ; 250: 18-35, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35811019

RESUMO

Bacteria, fungi, viruses, and protozoa are known to infect and induce diseases in the human central nervous system (CNS). Modeling the mechanisms of interaction between pathogens and the CNS microenvironment is essential to understand their pathophysiology and develop new treatments. Recent advancements in stem cell technologies have allowed for the creation of human brain organoids, which more closely resembles the human CNS microenvironment when compared to classical 2-dimensional (2D) cultures. Now researchers can utilize these systems to investigate and reinvestigate questions related to CNS infection in a human-derived brain organoid system. Here in this review, we highlight several infectious diseases which have been tested in human brain organoids and compare similarities in response to these pathogens across different investigations. We also provide a brief overview of some recent advancements which can further enrich this model to develop new and better therapies to treat brain infections.


Assuntos
Doenças Transmissíveis , Vírus , Humanos , Organoides , Encéfalo , Sistema Nervoso Central
5.
J Neuroinflammation ; 19(1): 125, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624463

RESUMO

BACKGROUND: Ischemic stroke is a leading cause of mortality worldwide, largely due to the inflammatory response to brain ischemia during post-stroke reperfusion. Despite ongoing intensive research, there have not been any clinically approved drugs targeting the inflammatory component to stroke. Preclinical studies have identified T cells as pro-inflammatory mediators of ischemic brain damage, yet mechanisms that regulate the infiltration and phenotype of these cells are lacking. Further understanding of how T cells migrate to the ischemic brain and facilitate neuronal death during brain ischemia can reveal novel targets for post-stroke intervention. METHODS: To identify the population of T cells that produce IL-21 and contribute to stroke, we performed transient middle cerebral artery occlusion (tMCAO) in mice and performed flow cytometry on brain tissue. We also utilized immunohistochemistry in both mouse and human brain sections to identify cell types and inflammatory mediators related to stroke-induced IL-21 signaling. To mechanistically demonstrate our findings, we employed pharmacological inhibitor anti-CXCL13 and performed histological analyses to evaluate its effects on brain infarct damage. Finally, to evaluate cellular mechanisms of stroke, we exposed mouse primary neurons to oxygen glucose deprivation (OGD) conditions with or without IL-21 and measured cell viability, caspase activity and JAK/STAT signaling. RESULTS: Flow cytometry on brains from mice following tMCAO identified a novel population of cells IL-21 producing CXCR5+ CD4+ ICOS-1+ T follicular helper cells (TFH) in the ischemic brain early after injury. We observed augmented expression of CXCL13 on inflamed brain vascular cells and demonstrated that inhibition of CXCL13 protects mice from tMCAO by restricting the migration and influence of IL-21 producing TFH cells in the ischemic brain. We also illustrate that neurons express IL-21R in the peri-infarct regions of both mice and human stroke tissue in vivo. Lastly, we found that IL-21 acts on mouse primary ischemic neurons to activate the JAK/STAT pathway and induce caspase 3/7-mediated apoptosis in vitro. CONCLUSION: These findings identify a novel mechanism for how pro-inflammatory T cells are recruited to the ischemic brain to propagate stroke damage and provide a potential new therapeutic target for stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Quimiocina CXCL13/metabolismo , Humanos , Infarto da Artéria Cerebral Média/patologia , Mediadores da Inflamação/metabolismo , Interleucinas , Isquemia/patologia , Janus Quinases/metabolismo , Camundongos , Neurônios/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Acidente Vascular Cerebral/patologia
6.
Nat Immunol ; 23(4): 581-593, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347285

RESUMO

Meningeal lymphatics near the cribriform plate undergo lymphangiogenesis during neuroinflammation to drain excess fluid. Here, we hypothesized that lymphangiogenic vessels may acquire an altered phenotype to regulate immunity. Using single-cell RNA sequencing of meningeal lymphatics near the cribriform plate from healthy and experimental autoimmune encephalomyelitis in the C57BL/6 model, we report that neuroinflammation induces the upregulation of genes involved in antigen presentation such as major histocompatibility complex class II, adhesion molecules including vascular cell adhesion protein 1 and immunoregulatory molecules such as programmed cell death 1 ligand 1, where many of these changes are mediated by interferon-γ. The inflamed lymphatics retain CD11c+ cells and CD4 T cells where they capture and present antigen, creating an immunoregulatory niche that represents an underappreciated interface in the regulation of neuroinflammation. We also found discontinuity of the arachnoid membrane near the cribriform plate, which provides unrestricted access to the cerebrospinal fluid. These findings highlight a previously unknown function of local meningeal lymphatics in regulating immunity that has only previously been characterized in draining lymph nodes.


Assuntos
Osso Etmoide , Vasos Linfáticos , Animais , Osso Etmoide/fisiologia , Linfangiogênese/fisiologia , Sistema Linfático , Doenças Neuroinflamatórias
7.
Curr Protoc ; 1(12): e300, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34870897

RESUMO

This article details the materials and methods required for both active induction and adoptive transfer of experimental autoimmune encephalomyelitis (EAE) in the SJL mouse strain using intact proteins or peptides from the two major myelin proteins: proteolipid protein (PLP) and myelin basic protein (MBP). Additionally, active induction of EAE in the C57BL/6 strain using myelin oligodendrocyte glycoprotein (MOG) peptide is also discussed. Detailed materials and methods required for the purification of both PLP and MBP are described, and a protocol for isolating CNS-infiltrating lymphocytes in EAE mice is included. Modifications of the specified protocols may be necessary for efficient induction of active or adoptive EAE in other mouse strains. © 2021 Wiley Periodicals LLC. Basic Protocol: Active induction of EAE with PLP, MBP, and MOG protein or peptide Alternate Protocol: Adoptive induction of EAE with PLP-, MBP-, or MOG-specific lymphocytes Support Protocol 1: Purification of proteolipid protein Support Protocol 2: Purification of myelin basic protein Support Protocol 3: Isolation of CNS-infiltrating lymphocytes.


Assuntos
Encefalomielite Autoimune Experimental , Transferência Adotiva , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Glicoproteína Mielina-Oligodendrócito
8.
Cells ; 10(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34943793

RESUMO

Infections with pathogenic mycobacteria are controlled by the formation of a unique structure known as a granuloma. The granuloma represents a host-pathogen interface where bacteria are killed and confined by the host response, but also where bacteria persist. Previous work has demonstrated that the T cell repertoire is heterogenous even at the single granuloma level. However, further work using pigeon cytochrome C (PCC) epitope-tagged BCG (PCC-BCG) and PCC-specific 5CC7 RAG-/- TCR transgenic (Tg) mice has demonstrated that a monoclonal T cell population is able to control infection. At the chronic stage of infection, granuloma-infiltrating T cells remain highly activated in wild-type mice, while T cells in the monoclonal T cell mice are anergic. We hypothesized that addition of an acutely activated non-specific T cell to the monoclonal T cell system could recapitulate the wild-type phenotype. Here we report that activated non-specific T cells have access to the granuloma and deliver a set of cytokines and chemokines to the lesions. Strikingly, non-specific T cells rescue BCG-specific T cells from anergy and enhance the function of BCG-specific T cells in the granuloma in the chronic phase of infection when bacterial antigen load is low. In addition, we find that these same non-specific T cells have an inhibitory effect on systemic BCG-specific T cells. Taken together, these data suggest that T cells non-specific for granuloma-inducing agents can alter the function of granuloma-specific T cells and have important roles in mycobacterial immunity and other granulomatous disorders.


Assuntos
Comunicação Celular , Granuloma/imunologia , Granuloma/microbiologia , Mycobacterium/fisiologia , Linfócitos T/imunologia , Animais , Antígenos de Bactérias/imunologia , Conalbumina , Citocromos c/metabolismo , Citocinas/metabolismo , Imunização , Ativação Linfocitária/imunologia , Ativação de Macrófagos , Camundongos Transgênicos , Modelos Biológicos , Mycobacterium bovis/fisiologia , Baço/citologia , Regulação para Cima
9.
Trends Immunol ; 42(11): 940-942, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656427

RESUMO

A new study by Da Mesquita et al. reports on how meningeal lymphatic modulation may influence amyloid-beta immunotherapy and microglial function in mouse models of Alzheimer's disease (AD). This research has broad implications for unraveling the role meningeal lymphatics may play in regulating immunity in the brain during AD pathology and treatment.


Assuntos
Doença de Alzheimer , Vasos Linfáticos , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo , Modelos Animais de Doenças , Humanos , Imunoterapia , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Meninges/metabolismo , Meninges/patologia , Camundongos , Camundongos Transgênicos
10.
Biol Futur ; 72(1): 45-60, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34554497

RESUMO

The central nervous system (CNS) lacks conventional lymphatics within the CNS parenchyma, yet still maintains fluid homeostasis and immunosurveillance. How the CNS communicates with systemic immunity has thus been a topic of interest for scientists in the past century, which has led to several theories of CNS drainage routes. In addition to perineural routes, rediscoveries of lymphatics surrounding the CNS in the meninges revealed an extensive network of lymphatics, which we now know play a significant role in fluid homeostasis and immunosurveillance. These meningeal lymphatic networks exist along the superior sagittal sinus and transverse sinus dorsal to the brain, near the cribriform plate below the olfactory bulbs, at the base of the brain, and surrounding the spinal cord. Inhibition of one or all of these lymphatic networks can reduce CNS autoimmunity in a mouse model of multiple sclerosis (MS), while augmenting these lymphatic networks can improve immunosurveillance, immunotherapy, and clearance in glioblastoma, Alzheimer's disease, traumatic brain injury, and cerebrovascular injury. In this review, we will provide historical context of how CNS drainage contributes to immune surveillance, how more recently published studies fit meningeal lymphatics into the context of CNS homeostasis and neuroinflammation, identify the complex dualities of lymphatic function during neuroinflammation and how therapeutics targeting lymphatic function may be more complicated than currently appreciated, and conclude by identifying some unresolved questions and controversies that may guide future research.


Assuntos
Doença de Alzheimer/imunologia , Encéfalo/imunologia , Sistema Nervoso Central/imunologia , Imunidade/imunologia , Sistema Linfático/imunologia , Doenças da Medula Espinal/imunologia , Animais , Modelos Animais de Doenças , Humanos , Vigilância Imunológica/imunologia
11.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502395

RESUMO

Stroke disrupts the homeostatic balance within the brain and is associated with a significant accumulation of necrotic cellular debris, fluid, and peripheral immune cells in the central nervous system (CNS). Additionally, cells, antigens, and other factors exit the brain into the periphery via damaged blood-brain barrier cells, glymphatic transport mechanisms, and lymphatic vessels, which dramatically influence the systemic immune response and lead to complex neuroimmune communication. As a result, the immunological response after stroke is a highly dynamic event that involves communication between multiple organ systems and cell types, with significant consequences on not only the initial stroke tissue injury but long-term recovery in the CNS. In this review, we discuss the complex immunological and physiological interactions that occur after stroke with a focus on how the peripheral immune system and CNS communicate to regulate post-stroke brain homeostasis. First, we discuss the post-stroke immune cascade across different contexts as well as homeostatic regulation within the brain. Then, we focus on the lymphatic vessels surrounding the brain and their ability to coordinate both immune response and fluid homeostasis within the brain after stroke. Finally, we discuss how therapeutic manipulation of peripheral systems may provide new mechanisms to treat stroke injury.


Assuntos
Neuroimunomodulação/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Animais , Transporte Biológico , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/fisiologia , Homeostase , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/patologia , Imunidade , Leucócitos , Linfangiogênese , Vasos Linfáticos , Neuroimunomodulação/fisiologia
12.
Front Cell Neurosci ; 15: 683676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248503

RESUMO

The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.

13.
J Immunol ; 207(4): 1065-1077, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321229

RESUMO

CNS tuberculosis (CNSTB) is the most severe manifestation of extrapulmonary tuberculosis infection, but the mechanism of how mycobacteria cross the blood-brain barrier (BBB) is not well understood. In this study, we report a novel murine in vitro BBB model combining primary brain endothelial cells, Mycobacterium bovis bacillus Calmette-Guérin-infected dendritic cells (DCs), PBMCs, and bacterial Ag-specific CD4+ T cells. We show that mycobacterial infection limits DC mobility and also induces cellular cluster formation that has a similar composition to pulmonary mycobacterial granulomas. Within the clusters, infection from DCs disseminates to the recruited monocytes, promoting bacterial expansion. Mycobacterium-induced in vitro granulomas have been described previously, but this report shows that they can form on brain endothelial cell monolayers. Cellular cluster formation leads to cluster-associated damage of the endothelial cell monolayer defined by mitochondrial stress, disorganization of the tight junction proteins ZO-1 and claudin-5, upregulation of the adhesion molecules VCAM-1 and ICAM-1, and increased transmigration of bacteria-infected cells across the BBB. TNF-α inhibition reduces cluster formation on brain endothelial cells and mitigates cluster-associated damage. These data describe a model of bacterial dissemination across the BBB shedding light on a mechanism that might contribute to CNS tuberculosis infection and facilitate treatments.


Assuntos
Barreira Hematoencefálica/imunologia , Células Dendríticas/imunologia , Mycobacterium bovis/imunologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Endoteliais/imunologia , Granuloma/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Molécula 1 de Adesão de Célula Vascular/imunologia
14.
Biol Futur ; 72(1): 61-68, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34095894

RESUMO

Persistent irritants that are resistant to innate and cognate immunity induce granulomas. These macrophage-dominated lesions that partially isolate the healthy tissue from the irritant and the irritant induced inflammation. Particles, toxins, autoantigens and infectious agents can induce granulomas. The corresponding lesions can be protective for the host but they can also cause damage and such damage has been associated with the pathology of more than a hundred human diseases. Recently, multiple molecular mechanisms underlying how normal macrophages transform into granuloma-inducing macrophages have been discovered and new information has been gathered, indicating how these lesions are initiated, spread and regulated. In this review, differences between the innate and cognate granuloma pathways are discussed by summarizing how the dendritic cell - T cell axis changes granulomatous immunity. Granuloma lesions are highly dynamic and depend on continuous cell replacement. This feature provides new therapeutic approaches to treat granulomatous diseases.


Assuntos
Granuloma/imunologia , Imunidade/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Animais , Células Dendríticas/imunologia , Humanos , Modelos Imunológicos , Linfócitos T/imunologia
15.
Curr Protoc Immunol ; 130(1): e101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32716613

RESUMO

In vitro culture models of the blood-brain barrier (BBB) provide a useful platform to test the mechanisms of cellular infiltration and pathogen dissemination into the central nervous system (CNS). We present an in vitro mouse model of the BBB to test Mycobacterium tuberculosis (Mtb) dissemination across brain endothelial cells. One-third of the global population is infected with Mtb, and in 1%-2% of cases bacteria invade the CNS through a largely unknown process. The "Trojan horse" theory supports the role of a cellular carrier that engulfs bacteria and carries them to the brain without being recognized. We present for the first time a protocol for an in vitro BBB-granuloma model that supports the Trojan horse mechanism of Mtb dissemination into the CNS. Handling of bacterial cultures, in vivo and in vitro infections, isolation of primary astroglial and endothelial cells, and assembly of the in vitro BBB model is presented. These techniques can be used to analyze the interaction of adaptive and innate immune system cells with brain endothelial cells, cellular transmigration, BBB morphological and functional changes, and methods of bacterial dissemination. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of primary mouse brain astrocytes and endothelial cells Basic Protocol 2: Isolation of primary mouse bone marrow-derived dendritic cells Support Protocol 1: Validation of dendritic cell purity by flow cytometry Basic Protocol 3: Isolation of primary mouse peripheral blood mononuclear cells Support Protocol 2: Isolation of primary mouse spleen cells Support Protocol 3: Purification and validation of CD4+ T cells from PBMCs and spleen cells Basic Protocol 4: Isolation of liver granuloma supernatant and determination of organ load Support Protocol 4: In vivo and in vitro infection with mycobacteria Basic Protocol 5: Assembly of the BBB co-culture model Basic Protocol 6: Assembly of the combined in vitro granuloma and BBB model.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Modelos Animais de Doenças , Mycobacterium tuberculosis/imunologia , Tuberculoma/etiologia , Tuberculoma/metabolismo , Tuberculose do Sistema Nervoso Central/etiologia , Tuberculose do Sistema Nervoso Central/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Técnicas de Cultura de Células , Separação Celular/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Tuberculoma/patologia , Tuberculose do Sistema Nervoso Central/patologia
16.
Cell Rep ; 27(7): 2119-2131.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091450

RESUMO

Many autoimmune and infectious diseases are characterized by the formation of granulomas which are inflammatory lesions that consist of spatially organized immune cells. These sites protect the host and control pathogens like Mycobacterium tuberculosis (Mtb), but are highly inflammatory and cause pathology. Using bacille Calmette-Guerin (BCG) and Mtb infection in mice that induce sarcoid or caseating granulomas, we show that a subpopulation of granuloma macrophages produces vascular endothelial growth factor (VEGF-A), which recruits immune cells to the granuloma by a non-angiogenic pathway. Selective blockade of VEGF-A in myeloid cells, combined with granuloma transplantation, shows that granuloma VEGF-A regulates granulomatous inflammation. The severity of granuloma-related inflammation can be ameliorated by pharmaceutical or genetic inhibition of VEGF-A, which improves survival of mice infected with virulent Mtb without altering host protection. These data show that VEGF-A inhibitors could be used as a host-directed therapy against granulomatous diseases like tuberculosis and sarcoidosis, thereby expanding the value of already existing and approved anti-VEGF-A drugs.


Assuntos
Inibidores da Angiogênese/farmacologia , Granuloma , Macrófagos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose Pulmonar , Fator A de Crescimento do Endotélio Vascular , Animais , Granuloma/tratamento farmacológico , Granuloma/genética , Granuloma/metabolismo , Granuloma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Nat Commun ; 10(1): 229, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651548

RESUMO

There are no conventional lymphatic vessels within the CNS parenchyma, although it has been hypothesized that lymphatics near the cribriform plate or dura maintain fluid homeostasis and immune surveillance during steady-state conditions. However, the role of these lymphatic vessels during neuroinflammation is not well understood. We report that lymphatic vessels near the cribriform plate undergo lymphangiogenesis in a VEGFC - VEGFR3 dependent manner during experimental autoimmune encephalomyelitis (EAE) and drain both CSF and cells that were once in the CNS parenchyma. Lymphangiogenesis also contributes to the drainage of CNS derived antigens that leads to antigen specific T cell proliferation in the draining lymph nodes during EAE. In contrast, meningeal lymphatics do not undergo lymphangiogenesis during EAE, suggesting heterogeneity in CNS lymphatics. We conclude that increased lymphangiogenesis near the cribriform plate can contribute to the management of neuroinflammation-induced fluid accumulation and immune surveillance.


Assuntos
Encéfalo/imunologia , Encefalomielite Autoimune Experimental/imunologia , Linfangiogênese/imunologia , Vasos Linfáticos/imunologia , Linfócitos T/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos/imunologia , Antígenos/metabolismo , Encéfalo/diagnóstico por imagem , Proliferação de Células , Líquido Cefalorraquidiano/imunologia , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Osso Etmoide , Azul Evans/administração & dosagem , Feminino , Humanos , Vigilância Imunológica/imunologia , Vasos Linfáticos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Toxina Pertussis/administração & dosagem , Toxina Pertussis/imunologia , Fator C de Crescimento do Endotélio Vascular/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
Mult Scler ; 25(1): 81-91, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29064315

RESUMO

BACKGROUND: The hygiene hypothesis suggests that microbial replacement may be therapeutic in allergic and autoimmune diseases. Nevertheless, the results of helminth treatment, including in multiple sclerosis (MS), have been inconclusive. OBJECTIVE: To assess safety and brain magnetic resonance imaging (MRI) activity in subjects with relapsing-remitting multiple sclerosis (RRMS) during oral administration of ova from the porcine whipworm, Trichuris suis (TSO). METHODS: A total of 16 disease-modifying treatment (DMT) naive RRMS subjects were studied in a baseline versus treatment (BVT) controlled prospective study. MRI scans were performed during 5 months of screening-observation, 10 months of treatment, and 4 months of post-treatment surveillance. RESULTS: No serious symptoms or adverse events occurred during treatment. For the cohort, there was a trend consistent with a 35% diminution in active lesions when observation MRIs were compared to treatment MRIs ( p = 0.08), and at the level of individuals, 12 of 16 subjects improved during TSO treatment. T regulatory lymphocytes were increased during TSO treatment. CONCLUSION: TSO is safe in RRMS subjects. Potentially favorable MRI outcomes and immunoregulatory changes were observed during TSO treatment; however, the magnitude of these effects was modest, and there was considerable variation among the responses of individual subjects.


Assuntos
Helmintíase , Imunoterapia/métodos , Esclerose Múltipla Recidivante-Remitente/terapia , Avaliação de Resultados em Cuidados de Saúde , Trichuris , Adulto , Animais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Óvulo , Estudos Prospectivos , Linfócitos T Reguladores , Adulto Jovem
19.
J Neurosci ; 38(32): 7058-7071, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29959236

RESUMO

T cells continuously sample CNS-derived antigens in the periphery, yet it is unknown how they sample and respond to CNS antigens derived from distinct brain areas. We expressed ovalbumin (OVA) neoepitopes in regionally distinct CNS areas (Cnp-OVA and Nes-OVA mice) to test peripheral antigen sampling by OVA-specific T cells under homeostatic and neuroinflammatory conditions. We show that antigen sampling in the periphery is independent of regional origin of CNS antigens in both male and female mice. However, experimental autoimmune encephalomyelitis (EAE) is differentially influenced in Cnp-OVA and Nes-OVA female mice. Although there is the same frequency of CD45high CD11b+ CD11c+ CX3CL1+ myeloid cell-T-cell clusters in neoepitope-expressing areas, EAE is inhibited in Nes-OVA female mice and accelerated in CNP-OVA female mice. Accumulation of OVA-specific T cells and their immunomodulatory effects on EAE are CX3C chemokine receptor 1 (CX3CR1) dependent. These data show that despite similar levels of peripheral antigen sampling, CNS antigen-specific T cells differentially influence neuroinflammatory disease depending on the location of cognate antigens and the presence of CX3CL1/CX3CR1 signaling.SIGNIFICANCE STATEMENT Our data show that peripheral T cells similarly recognize neoepitopes independent of their origin within the CNS under homeostatic conditions. Contrastingly, during ongoing autoimmune neuroinflammation, neoepitope-specific T cells differentially influence clinical score and pathology based on the CNS regional location of the neoepitopes in a CX3CR1-dependent manner. Altogether, we propose a novel mechanism for how T cells respond to regionally distinct CNS derived antigens and contribute to CNS autoimmune pathology.


Assuntos
Receptor 1 de Quimiocina CX3C/fisiologia , Sistema Nervoso Central/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Células-Tronco Neurais/imunologia , Neuroimunomodulação/fisiologia , Oligodendroglia/imunologia , Subpopulações de Linfócitos T/imunologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CX3CL1/fisiologia , Feminino , Genes Sintéticos , Camundongos , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/genética , Nestina/genética , Especificidade de Órgãos , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...