Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(16): e2106570, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263020

RESUMO

Manganese ferrite nanoparticles display interesting features in bioimaging and catalytic therapies. They have been recently used in theranostics as contrast agents in magnetic resonance imaging (MRI), and as catalase-mimicking nanozymes for hypoxia alleviation. These promising applications encourage the development of novel synthetic procedures to enhance the bioimaging and catalytic properties of these nanomaterials simultaneously. Herein, a cost-efficient synthetic microwave method is developed to manufacture ultrasmall manganese ferrite nanoparticles as advanced multimodal contrast agents in MRI and positron emission tomography (PET), and improved nanozymes. Such a synthetic method allows doping ferrites with Mn in a wide stoichiometric range (Mnx Fe3-x O4 , 0.1 ≤ x ≤ 2.4), affording a library of nanoparticles with different magnetic relaxivities and catalytic properties. These tuned magnetic properties give rise to either positive or dual-mode MRI contrast agents. On the other hand, higher levels of Mn doping enhance the catalytic efficiency of the resulting nanozymes. Finally, through their intracellular catalase-mimicking activity, these ultrasmall manganese ferrite nanoparticles induce an unprecedented tumor growth inhibition in a breast cancer murine model. All of these results show the robust characteristics of these nanoparticles for nanobiotechnological applications.


Assuntos
Meios de Contraste , Nanopartículas , Animais , Catalase , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês , Camundongos
2.
Int J Mol Sci ; 21(9)2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375361

RESUMO

In this review, the potential future role of microRNA-based therapies and their specific application in lung diseases is reported with special attention to pulmonary hypertension. Current limitations of these therapies will be pointed out in order to address the challenges that they need to face to reach clinical applications. In this context, the encapsulation of microRNA-based therapies in nanovectors has shown improvements as compared to chemically modified microRNAs toward enhanced stability, efficacy, reduced side effects, and local administration. All these concepts will contextualize in this review the recent achievements and expectations reported for the treatment of pulmonary hypertension.


Assuntos
Hipertensão Pulmonar/genética , Hipertensão Pulmonar/terapia , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/uso terapêutico , Terapêutica com RNAi , Nanomedicina Teranóstica , Animais , Biomarcadores , Sistemas de Liberação de Medicamentos , Humanos , Pneumopatias/etiologia , Pneumopatias/terapia , Nanomedicina , Nanotecnologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico , Terapêutica com RNAi/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...