Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2646-2653, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232312

RESUMO

Ammonia reforming of light alkane is conventionally employed for HCN production where coproduct H2 is burned for heating owing to the high reaction temperature (1200 °C) of such a highly endothermic process. Here, we show that a Ni3Ga1 intermetallic compound (IMC) catalyst is highly efficient for such a reaction, realizing efficient conversion of C1-C3 alkanes at 575-750 °C. This makes it feasible for on-purpose COx-free H2 production assuming that ammonia, as an H2 carrier, is ubiquitously available from renewable energy. At 650 °C and an alkane/ammonia ratio of 1/2, ethane and propane conversion of ∼20% and methane conversion of 13% were obtained (with nearly 100% HCN selectivity for methane and ethane) over the unsupported Ni3Ga1 IMC, which also shows high stability due to the absence of coke deposition. This breakthrough is achieved by employing a stoichiometric Ni3Ga1 mixed oxalate solid solution as the precursor for the Ni3Ga1 IMC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...