Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202301828, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837600

RESUMO

Additive manufacturing (AM) is a well-established technique that allows for the development of complex geometries and structures with multiple applications. While considered as a more environmentally-friendly method compared to traditional manufacturing, a significant challenge lies in the availability and ease of synthesis of bio-based alternative resins. In our endeavor to valorize biomass, this work proposes the synthesis of new α,ω-dienes derived from cellulose-derived levoglucosenone (LGO). These dienes are not only straightforward to synthesize but also offer a tunable synthesis approach. Specifically, LGO is first converted into diol precursor, which is subsequently esterified using various carboxylic acids (in this case, 3-butenoic, and 4-pentenoic acids) through a straightforward chemical pathway. The resulting monomers were then employed in UV-activated thiol-ene chemistry for digital light process (DLP). A comprehensive study of the UV-curing process was carried out by Design of Experiment (DoE) to evaluate the influence of light intensity and photoinitiator to find the optimal curing conditions. Subsequently, a thorough thermo-mechanical characterization highlighted the influence of the chemical structure on material properties. 3D printing was performed, enabling the fabrication of complex and self-stain structures with remarkable accuracy and precision. Lastly, a chemical degradation study revealed the potential for end-of-use recycling of the bio-based thermosets.

2.
ChemSusChem ; 17(11): e202301841, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545821

RESUMO

Regioselective enzymatic polycondensation of the bio-based cellulose derived polyol, Triol-citro, and dimethyl adipate using Candida antarctica Lipase B (CaLB) was investigated. A Design of Experiment approach with MODDE® Pro 13 was used to determine important factors in the branching behavior of this polymer, and reactant ratio, temperature, reaction time and enzyme wt % were the studied factors. Multifunctional polyesters with pendant hydroxy groups were synthesized and fully characterized using 2D NMR techniques to determine degree of branching. Branching was minimal, with a maximum of 16 % observed, and monomer ratio, temperature and reaction time were all determined to be significant factors. In this work, Mn of up to 13 kDa were achieved, while maintaining degree of branching below 15 %, resulting in a linear polyester with the potential to be further functionalized.


Assuntos
Celulose , Proteínas Fúngicas , Lipase , Poliésteres , Poliésteres/química , Poliésteres/síntese química , Lipase/metabolismo , Lipase/química , Celulose/química , Temperatura , Técnicas de Química Sintética
3.
Int J Biol Macromol ; 261(Pt 2): 129814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286382

RESUMO

Modification of lignin plays a crucial role in extending its applications. While chemical functionalization has been extensively applied, exploring the enzyme-catalyzed approach for grafting phenolic molecules presents a promising avenue. Herein, we investigate the controlled laccase-mediated grafting of vanillin onto lignosulfonates (LS) as a sustainable approach to introduce aldehydes into LS, paving the way for further (bio)chemical functionalizations (e.g., reductive amination and Knoevenagel-Doebner condensations). The resulting vanillin-grafted LS is comprehensively characterized (HPLC, SEC, Pyrolysis-GC/MS, FTIR). The study reveals four key steps in the grafting process: (i) vanillin acts as a mediator, generating the phenoxyl radical that initiates LS oxidation, (ii) the oxidation leads to depolymerization of LS, resulting in a decrease in molecular weight, (iii) rearrangement in the vanillin-grafted LS, evidenced by the replacement of labile bonds by stronger 5-5 bonds that resist to pyrolysis, and (iv) if the reaction is prolonged after complete consumption of vanillin, condensation of the vanillin-grafted LS occurs, leading to a significant increase in molecular weight. This study provides valuable insights on the behavior of vanillin and LS throughout the process and allows to identify the optimal reaction conditions, thereby enhancing the production of vanillin-grafted LS for its subsequent functionalization.


Assuntos
Aldeídos , Benzaldeídos , Lignina/análogos & derivados , Benzaldeídos/química , Lignina/química
4.
Macromol Rapid Commun ; 45(2): e2300483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876336

RESUMO

This study focuses on the synthesis of fully renewable polycarbonates (PCs) starting from cellulose-based platform molecules levoglucosenone (LGO) and 2,5-bis(hydroxymethyl)furan (BHMF). These unique bio-based PCs are obtained through the reaction of a citronellol-containing triol (Triol-citro) derived from LGO, with a dimethyl carbonate derivative of BHMF (BHMF-DC). Solvent-free polymerizations are targeted to minimize waste generation and promote an eco-friendly approach with a favorable environmental factor (E-factor). The choice of metal catalyst during polymerization significantly influences the polymer properties, resulting in high molecular weight (up to 755 kDa) when Na2 CO3 is employed as an inexpensive catalyst. Characterization using nuclear magnetic resonance confirms the successful incorporation of the furan ring and the retention of the terminal double bond of the citronellol pendant chain. Furthermore, under UV irradiation, the presence of both citronellol and furanic moieties induces singular structural changes, triggering the formation of three distinct structures within the polymer network, a phenomenon herein occurs for the first time in this type of polymer. These findings pave the way to new functional materials prepared from renewable monomers with tunable properties.


Assuntos
Monoterpenos Acíclicos , Compostos Bicíclicos Heterocíclicos com Pontes , Furaldeído/análogos & derivados , Glucose/análogos & derivados , Cimento de Policarboxilato , Polímeros , Polímeros/química
5.
ChemSusChem ; 17(6): e202301311, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37937483

RESUMO

The present research article delves into the preparation of a new class of bio-based polyesters from α,ω-diene furandicarboxylate monomers. In particular, it exploits the use of acyclic diene metathesis polymerisation (ADMET) on 2,5-furandicarboxylic acid (FDCA)-derived compounds. First, a library of furan-based α,ω-diene monomers was prepared via acid- or base-catalyzed transesterification of 2,5-furandicarboxylic acid dimethyl ester (FDME) with commercially available alcohols incorporating terminal olefins, i. e., allyl alcohol, but-3-en-1-ol, hex-5-en-1-ol and dec-9-en-1-ol. Then, the novel monomers were subjected to ADMET polymerisation employing different catalysts and reaction conditions. Interestingly, first-generation Grubbs catalyst was found to be the best promoter for ADMET polymerisation. This catalyst allowed the preparation of a new family of bio-based polyesters with molecular weights up to 26.4 kDa, with good thermal stability, and adaptable cis-trans conformations. Results also revealed that the monomer structure had a direct impact on the polymerisation efficiency and the resulting thermal properties. The effect of green bio-based solvents such as Cyrene™, dimethyl isosorbide (DMI) and γ-valerolactone (GVL) on the polymerisation process was also studied. Data collected showed that the solvent concentration influenced both the yield and length of polymers formed. Furthermore, some co-polymerisation experiments were conducted; the successful integration of different monomers in the resulting copolymer was shown to affect the glass transition temperature (Tg) of the resulting materials.

6.
Food Chem ; 410: 135395, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696781

RESUMO

Ferulic acid displays poor thermal resistance during extrusion and compression moulding, slow 2,2-diphenyl-1-picrylhydrazyl (DPPH) reaction kinetics, and undetected release from polylactide (PLA) and polyhydroxyalkanoates (PHA)-based films into polar media. Thus, in this study, a ferulic acid derivative Bis-O-dihydroferuloyl-1,4-butanediol (BDF) was used as an active additive (up to 40 w%) in PLA, poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrices to produce blends by extrusion. These blends were then used to prepare films by solvent casting. The BDF displayed good stability with 86-93% retention. The release kinetics in Food Simulant A revealed higher BDF release amounts (1.16-3.2%) for PHA-based films as compared to PLA. The BDF displayed faster DPPH reaction kinetics as compared to ferulic acid. The PHA-based films containing BDF displayed > 80% of DPPH inhibition. The growth of crystals inside polymer matrix had a nucleation effect which reduced the glass transition temperature of the films.


Assuntos
Antioxidantes , Poli-Hidroxialcanoatos , Cinética , Poliésteres/química , Poli-Hidroxialcanoatos/química
7.
Polymers (Basel) ; 14(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631964

RESUMO

Recently, a renewable five-membered lactone containing citronellol (HBO-citro) was synthesized from levoglucosenone (LGO). A one-pot two-step pathway was then developed to produce a mixture of 5- and 6-membered Lactol-citro molecules (5ML and 6ML, respectively) from HBO-citro. Proton nuclear magnetic resonance (1H NMR) of a mixture of 5ML and 6ML at varying temperatures showed that the chemical shifts of the hydroxyls, as well as the 5ML:6ML ratio, are temperature-dependent. Indeed, a high temperature, such as 65 °C, led to an up-field shielding of the hydroxyl protons as well as a drop in the 5ML:6ML ratio. The monomers 5ML and 6ML were then engaged in polycondensation reactions involving diacyl chlorides. Renewable copolyesters with low glass transition temperatures (as low as -67 °C) and cross-linked citronellol chains were prepared. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG). A higher degradation rate was found for the polymers prepared using Lactol-citro molecules, compared to those obtained by the polycondensation reactions of diacyl chlorides with Triol-citro-a monomer recently obtained by the selective reduction of HBO-citro.

8.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458314

RESUMO

Poly-ß-hydroxybutyrate (PHB) is a very common bio-based and biocompatible polymer obtained from the fermentation of soil bacteria. Due to its important crystallinity, PHB is extremely brittle in nature, which results in poor mechanical properties with low extension at the break. To overcome these issues, the crystallinity of PHB can be reduced by blending with plasticizers such as ferulic acid derivatives, e.g., bis-O-dihydroferuloyl-1,4-butanediol (BDF). The degradation potential of polymer blends of PHB containing various percentages (0, 5, 10, 20, and 40 w%) of BDF was investigated through chemical, enzymatic and fungal pathways. Chemical degradation revealed that, in 0.25 M NaOH solution, the presence of BDF in the blend was necessary to carry out the degradation, which increased as the BDF percentage increased. Whereas no enzymatic degradation could be achieved in the tested conditions. Fungal degradation was achieved with a strain isolated from the soil and monitored through imagery processing. Similar to the chemical degradation, higher BDF content resulted in higher degradation by the fungus.

9.
Macromol Rapid Commun ; 43(13): e2200254, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35429188

RESUMO

Nowadays, degradation of polymeric material is a hot topic, it is either related to environmental considerations to avoid pollution accumulation, or to biomedical applications to reduce the toxicity or to facilitate the excretion of foreign agents in the body. Functionalization is a promising and interesting method to tune polymers degradation kinetics and profiles in a robust and controllable way depending on the targeted application. The incorporation of a functionality to a macromolecule occurs through mainly two strategies: direct functionalization of the corresponding monomers before their polymerization, and postpolymerization modifications that can occur on the side, main or/and end chains of the polymers. Ideally, the lifespan of a material is restricted to the duration of the application, its mechanical and chemical properties do not deteriorate and does not produce toxic byproducts over the degradation process. This review presents the latest advances in polymer functionalization strategies in terms of their impact on the degradation process. Special considerations are given to the main classes of polymers including polyesters, polyurethanes, polyacetals, as well as vinyl-based and phosphorous-derived polymers.


Assuntos
Poliésteres , Polímeros , Poliésteres/química , Polimerização , Polímeros/química , Poliuretanos
10.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946753

RESUMO

Levoglucosenone (LGO) is a cellulose-derived molecule that is present commercially on a multi-ton/year scale. Taking advantage of the α,ß-conjugated ketone of LGO, a new citronellol-containing 5-membered lactone (HBO-citro) was synthesized through a one-pot two-step pathway involving oxa-Michael addition and Baeyer-Villiger oxidation. The solvent-free treatment of HBO-citro with NaBH4 at room temperature led to the full reduction of the lactone moiety which gave a novel fully renewable triol monomer having a citronellol side chain (Triol-citro). Noticeably, by simply changing the reducing agent, temperature and reaction duration, the partial reduction of HBO-citro can be achieved to yield a mixture of 5- and 6-membered Lactol-citro molecules. Triol-citro was chosen to prepare functional renewable polyesters having citronellol pendant chains via polycondensation reactions with diacyl chlorides having different chain lengths. Good thermal stability (Td5% up to 170 °C) and low glass transition temperatures (as low as -42 °C) were registered for the polyesters obtained. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG) to assess their biodegradability. A higher degradation profile was found for the polyesters prepared using co-monomers (acyl chlorides) having longer chain lengths. This is likely due to the decreased steric hindrance around the ester bonds which allowed enhanced accessibility of the enzyme.


Assuntos
Monoterpenos Acíclicos/metabolismo , Celulose/metabolismo , Lipase/metabolismo , Poliésteres/metabolismo , Monoterpenos Acíclicos/química , Biodegradação Ambiental , Celulose/química , Eurotiales/enzimologia , Lipase/química , Estrutura Molecular , Poliésteres/síntese química , Poliésteres/química , Temperatura
11.
Macromol Rapid Commun ; 42(19): e2100284, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34347323

RESUMO

The homopolymerization in basic conditions of the recently reported bis(γ-lactone), 2H-HBO-HBO, is herein described for the first time. The solvent-free polymerization of this pentafunctional levoglucosenone (LGO) derivative affords fully renewable poly(vinyl-ether lactone) copolymers with a highly hyperbranched structure. This investigation stems from the polycondensation trials between 2H-HBO-HBO and di(methyl carbonate) isosorbide (DCI) that fails to give the anticipated polycarbonates. Such unexpected behavior is ascribed to the higher reactivity of the 2H-HBO-HBO hydroxy groups toward its α,ß-conjugated endocyclic C═C, rather than the DCI methylcarbonate moieties. The different mechanistic scenarios involved in 2H-HBO-HBO homopolymerization are addressed and a possible structure of poly(2H-HBO-HBO) is suggested. Furthermore, the readily accessible (S)-γ-hydroxymethyl-α,ß-butenolide (HBO) is also polymerized for the first time at a relatively large scale, without any prior modification, resulting in a new hyperbranched polymer with an environmental factor (E factor) ≈0. These new HBO-based polymers have a great potential for industrial-scale production due to their interesting properties and easy preparation via a low-cost, green, and efficient process.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Polímeros , Glucose/análogos & derivados , Substâncias Macromoleculares , Polimerização
12.
ChemSusChem ; 13(10): 2613-2620, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32237202

RESUMO

The already-reported, low-yielding, and non-sustainable Et3 N-mediated homocoupling of levoglucosenone (LGO) into the corresponding LGO-CyreneTM diketone has been revisited and greened-up. The use of methanol as both a renewable solvent and catalyst and K2 CO3 as a safe inorganic base improved the reaction significantly with regards to yield, purification, and green aspects. LGO-CyreneTM was then subjected to a one-pot, H2 O2 -mediated Baeyer-Villiger oxidation/rearrangement followed by an acidic hydrolysis to produce a new sterically hindered bicyclic monomer, 2H-HBO-HBO. This diol was further polymerized in bulk with diacyl chlorides to access new promising renewable polyesters that exhibit glass transition temperatures (Tg ) from -1 to 81 °C and a good thermostability with a temperature at which 50 % of the mass is lost (Td50 % ) of 349-406 °C.

13.
Nanoscale Adv ; 2(5): 2087-2098, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36132534

RESUMO

The elaboration of catalytic composite nanofibers (NFs) by electrospinning through a one-pot strategy is described. First, aqueous colloidal suspensions of ruthenium nanoparticles (Ru NPs) formed by reduction of a Ru(iii) salt with NaBH4 and stabilized by poly(cyclodextrin citrate) (PCD) were prepared. Then, poly(vinyl alcohol) (PVA) of different molecular weights was dissolved in the colloidal suspensions that were electrospun. SEM analyses of the resulting nanowebs displayed uniform NFs, whose diameters ranged between 300 and 700 nm and enlarged upon increasing (i) PVA molecular weight, (ii) nanosuspension viscosity, (iii) the amount of NaBH4 and (iv) the PCD/Ru NP concentration. TEM analysis confirmed that Ru NPs with a mean diameter of around 2 nm were observed at the surface of NFs, embedded in the PVA matrix of NFs. HAADF-STEM and EDS mapping clearly showed that Ru NPs were homogeneously distributed onto and into the matrix of NFs. After their electrospinning, the prepared nanowebs were submitted to a heat post-treatment at 160 °C which was shown to trigger the PVA crystallization. In addition, the physical crosslinking of PVA chains by NaBO2 resulting from NaBH4 oxidation in the precursor suspension was also observed. Interestingly, an SEM study evidenced that the thermal post-treatment in combination with the presence of NaBO2 clearly improved the thermal stability of the synthesized composite nanowebs. Finally, catalytic hydrogenation tests showed the absence of Ru NPs leaching from NFs in the reaction medium, and displayed good conversion of styrene into ethylbenzene.

14.
Chemistry ; 23(62): 15644-15654, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28845893

RESUMO

A series of new trivalent rare-earth allyl-borohydride complexes with the formula [RE(BH4 )2 (C3 H5 )(thf)x ] (RE=Sc (1), x=2; RE=Y (2) and La (3), x=3) were synthesized by reaction of the corresponding rare-earth trisborohydrides [RE(BH4 )3 (thf)x ] with half an equivalent of bis(allyl)magnesium. The complexes were fully characterized by determining their X-ray structure. Similar to their previously described Nd (4) and Sm (5) analogues, these complexes display a monomeric structure with two terminal trihapto BH4 groups, one π-η3 allyl ligand, three THF molecules for complexes 2 and 3, and two THF molecules for complex 1. The catalytic behavior of complexes 1-5 toward the ring-opening polymerization (ROP) of l-lactide (l-LA) and ϵ-caprolactone (ϵ-CL) was assessed. The Nd complex featured the best activity toward l-LA (turnover frequency (TOF)=1300 h-1 ) and the order was Nd>La>Sm>Y>Sc. Complexes 1-3 were found very active for the ROP of ϵ-CL (TOF=166 000 h-1 ), which is in line with the already established exceptionnally high performance of complexes 4 and 5. With both monomers, it was shown that the borohydride moiety was the preferentially initiating group, rather than the allyl one. The random copolymerization of l-LA and ϵ-CL was performed with complexes 1-5, in the absence or in the presence of benzyl alcohol as a chain-transfer agent, affording copolymers with ϵ-caprolactone up to 62 % inserted. The copolymers synthesized display a variety of microstructures, that is, blocky, random, or quasi-alternating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...