Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1343593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38693925

RESUMO

Japanese plum, like other temperate fruit tree species, has cultivar-specific temperature requirements during dormancy for proper flowering. Knowing the temperature requirements of this species is of increasing interest due to the great genetic variability that exists among the available Japanese plum-type cultivars, since most of them are interspecific hybrids. The reduction of winter chilling caused by climate change is threatening their cultivation in many regions. In this work, the adaptation perspectives of 21 Japanese plum-type cultivars were analyzed in two of the main plum-growing regions in Spain, Badajoz and Zaragoza, to future climate conditions. Endodormancy release for subsequent estimation of chilling and heat requirements was determined through empirical experiments conducted during dormancy at least over two years. Chill requirements were calculated using three models [chilling hours (CH), chilling units (CU) and chilling portions (CP)] and heat requirements using growing degree hours (GDH). Chilling requirements ranged 277-851 CH, 412-1,030 CU and 26-51 CP, and heat requirements ranged from 4,343 to 9,525 GDH. The potential adaption of the cultivars to future warmer conditions in both regions was assessed using climate projections under two Representative Concentration Pathways (RCP), RCP4.5 (effective reduction of greenhouse gas emissions) and RCP8.5 (continuous increase in greenhouse gas emissions), in two time horizons, from the middle to the end of 21st century, with temperature projections from 15 Global Climate Models. The probability of satisfying the estimated cultivar-specific chilling requirements in Badajoz was lower than in Zaragoza, because of the lower chill availability predicted. In this region, the cultivars analyzed herein may have limited cultivation because the predicted reduction in winter chill may result in the chilling requirements not being successfully fulfilled.

2.
Plants (Basel) ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37687272

RESUMO

Apricot has undergone an important cultivar renewal during the last years in response to productive and commercial changes in the crop. The impact of the sharka disease (plum pox virus) prompted the release of cultivars resistant/tolerant to this virus, leading to a major cultivar renewal worldwide. This has caused high variability in chilling requirements on new releases that remain unknown in many cases. In many apricot-growing areas, the lack of winter chilling is becoming a limiting factor in recent years. To deal with this situation, growers must choose cultivars well adapted to their areas. However, the information available on the agroclimatic requirements of the cultivars is very limited. To fill this gap, in this work, we have characterized the chilling requirements of 13 new apricot cultivars from Europe (France, Greece and Spain) and North America (USA) in two experimental collections in Aragón (Spain). We established the chilling period using male meiosis as a biomarker for endodormancy release over two years. Chilling requirements ranged from 51.9 Chill Portions (CP) to 70.9 CP. Knowing the chilling requirements of cultivars will help growers to select suitable cultivars adapted to the chill availability of their region.

3.
Front Plant Sci ; 13: 842333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463418

RESUMO

Dormancy is an adaptive strategy in plants to survive under unfavorable climatic conditions during winter. In temperate regions, most fruit trees need exposure to a certain period of low temperatures to overcome endodormancy. After endodormancy release, exposure to warm temperatures is needed to flower (ecodormancy). Chilling and heat requirements are genetically determined and, therefore, are specific for each species and cultivar. The lack of sufficient winter chilling can cause failures in flowering and fruiting, thereby compromising yield. Thus, the knowledge of the chilling and heat requirements is essential to optimize cultivar selection for different edaphoclimatic conditions. However, the lack of phenological or biological markers linked to the dormant and forcing periods makes it difficult to establish the end of endodormancy. This has led to indirect estimates that are usually not valid in different agroclimatic conditions. The increasing number of milder winters caused by climatic change and the continuous release of new cultivars emphasize the necessity of a proper biological marker linked to the endo- to ecodormancy transition for an accurate estimation of the agroclimatic requirements (AR) of each cultivar. In this work, male meiosis is evaluated as a biomarker to determine endodormancy release and to estimate both chilling and heat requirements in apricot. For this purpose, pollen development was characterized histochemically in 20 cultivars over 8 years, and the developmental stages were related to dormancy. Results were compared to three approaches that indirectly estimate the breaking of dormancy: an experimental methodology by evaluating bud growth in shoots collected periodically throughout the winter months and transferred to forcing chambers over 3 years, and two statistical approaches that relate seasonal temperatures and blooming dates in a series of 11-20 years by correlation and partial least square regression. The results disclose that male meiosis is a possible biomarker to determine the end of endodormancy and estimate AR in apricot.

4.
Tree Physiol ; 41(4): 619-630, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32453409

RESUMO

Male meiosis in temperate fruit trees occurs in the anthers once a year, synchronized with the seasons. The alternation of dormant and growth cycles determines the optimum moment for the male gametophyte formation, a process sensitive to both cold and warm temperatures. This ensures pollen viability and subsequent reproduction success that guarantee fruit production. In this work, we explore how male meiosis is framed by seasonality in sweet cherry. For this purpose, the dormant phases, male meiosis and blooming dates were established in four cultivars with different flowering dates and chilling requirements over 7 years. The chilling and heat requirements for each cultivar were empirically estimated, and chilling and heat temperatures were quantified according to the Dynamic and Growing Degree Hours (GDH) models, respectively. Endodormancy was overcome approximately a fortnight earlier during the colder winters than during the milder winters. Against our initial hypothesis, these differences were not clearly reflected in the time of male meiosis. The period between chilling fulfillment and meiosis lasted several weeks, during which a high amount of GDH accumulated. Results showed that male meiosis is conditioned by endodormancy but especially by warm temperatures, during the forcing period. This differs from what has been described in other related species and creates a framework for further studies to understand the strategies of synchronizing dormancy with seasons.


Assuntos
Prunus avium , Flores , Meiose , Estações do Ano , Temperatura
5.
J Vis Exp ; (145)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30958482

RESUMO

Changes in starch in small structures are associated with key events during several plant developmental processes, including the reproductive phase from pollination to fertilization and the onset of fruiting. However, variations in starch during flower differentiation are not completely known, mainly due to the difficulty of quantifying the starch content in the particularly small structures of the flower primordia. Here, we describe a method for the quantification of starch in the ovary primordia of sweet cherry (Prunus avium L.) by using an image analysis system attached to the microscope, which allows relating the changes in starch content with the different phases of dormancy from autumn to spring. For this purpose, the dormancy status of flower buds is determined by evaluating the bud growth of shoots transferred to controlled conditions at different moments in winter time. For the quantification of starch in the ovary primordia, flower buds are sequentially collected, fixed, embedded in paraffin wax, sectioned, and stained with I2Kl (potassium iodide-iodine). Preparations are observed under the microscope and analyzed by an image analyzer that clearly distinguishes starch from the background. Starch content values are obtained by measuring the optical density of the image that corresponds to the stained starch, considering the sum of the optical density of each pixel as an estimation of the starch content of the frame studied.


Assuntos
Flores/citologia , Flores/metabolismo , Processamento de Imagem Assistida por Computador , Dormência de Plantas , Prunus avium/citologia , Estações do Ano , Coloração e Rotulagem , Amido/metabolismo , Imuno-Histoquímica
6.
Protoplasma ; 256(3): 733-744, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30506265

RESUMO

Anther and pollen development is a highly conserved process in angiosperms, but while pollen formation in annual plants occurs in a few days, in temperate woody perennials, it requires several months. How anther and pollen development is framed in terms of seasonality plays a clear part in reproductive success. In this study, seasonal anther and pollen development is characterized in two sweet cherry cultivars over 2 years, paying special attention to the period of dormancy and unveiling the role of starch in this process. We evaluated starch content from the autumn until bud burst with the help of an image analysis system fitted to a light microscope. Microscope observations allowed the temporal relationship of pollen development to the phenological stages of flower and bud development to be determined. In both cultivars and years, anther and pollen development followed the same pattern. Development was halted by dormancy, when the anthers showed no morphological changes until several weeks after chilling fulfillment, until the milder temperatures reactivated development. After dormancy, starch was accumulated in the connective tissue until tracheary element differentiation. Quantification of starch in the connective tissue of anthers revealed its importance in supporting pollen meiosis and subsequent anther growth.


Assuntos
Dormência de Plantas/fisiologia , Pólen/crescimento & desenvolvimento , Prunus avium/crescimento & desenvolvimento , Estações do Ano , Gametogênese Vegetal , Processamento de Imagem Assistida por Computador , Tamanho do Órgão , Feixe Vascular de Plantas/fisiologia , Pólen/citologia , Prunus avium/citologia , Amido/metabolismo , Temperatura
7.
Front Plant Sci ; 9: 171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497434

RESUMO

Temperate woody perennials survive to low temperatures in winter entering a dormant stage. Dormancy is not just a survival strategy, since chilling accumulation is required for proper flowering and arbitrates species adaptation to different latitudes. In spite of the fact that chilling requirements have been known for two centuries, the biological basis behind remain elusive. Since chilling accumulation is required for the normal growth of flower buds, it is tempting to hypothesize that something might be going on at this particular stage during winter dormancy. Here, we characterized flower bud development in relation to dormancy, quantifying changes in starch in the flower primordia in two sweet cherry cultivars over a cold and a mild year. Results show that, along the winter, flower buds remain at the same phenological stage with flower primordia at the very same developmental stage. But, surprisingly, important variation in the starch content of the ovary primordia cells occurs. Starch accumulated following the same pattern than chilling accumulation and reaching a maximum at chilling fulfillment. This starch subsequently vanished during ecodormancy concomitantly with ovary development before budbreak. These results showed that, along the apparent inactivity during endodormancy, flower primordia were physiologically active accumulating starch, providing a biological basis to understand chilling requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...