Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
2.
Transl Stroke Res ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302738

RESUMO

Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.

3.
Life (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37374057

RESUMO

BACKGROUND: Sustained microglial activation contributes to the development of post-stroke cognitive impairment (PSCI). Compound 21 (C21), an angiotensin II type 2 receptor agonist, has shown some neurovascular protection after stroke. This study aimed to investigate the direct anti-inflammatory effects of C21 on macrophages, as well as brain innate immune cells. METHODS: Murine microglial cell line (C8-B4) and RAW 264.7 macrophages were exposed to lipopolysaccharide (LPS) and co-treated with C21. Pro-inflammatory mediators were assessed via RT-qPCR and ELISA. Cellular reactive oxygen species (ROS) were evaluated via CellROXGreen staining, and nitrate production was assessed using Griess assay. RESULTS: C21 suppressed LPS-induced inflammation and ROS generation in both cells. In microglia, C21 blunted LPS-induced mRNA expression of IL-1ß, IL-12b, COX-1, iNOS, and IL-6. A similar pattern was observed in macrophages, where C21 suppressed LPS-induced IL-1ß, TNF-α, and CXCL1 expression. These anti-inflammatory effects in microglia and macrophages were associated with increased neuroprotective gene expression, including GDNF and BDNF, in a dose-dependent manner. CONCLUSIONS: Our findings suggest a protective effect of C21 against the inflammatory response, in both macrophages and microglia, via suppression of the release of pro-inflammatory cytokines/chemokines and the generation of ROS while stimulating the production of neurotrophic factors.

5.
Am J Physiol Heart Circ Physiol ; 324(2): H212-H225, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563009

RESUMO

Diabetes increases the risk of poststroke cognitive impairment (PSCI). Greater hemorrhagic transformation (HT) after stroke is associated with vasoregression and cognitive decline in male diabetic rats. Iron chelator deferoxamine (DFX) prevents vasoregression and improves outcomes. Although diabetic female rats develop greater HT, its impact on poststroke cerebrovascularization and cognitive outcomes remained unknown. We hypothesized that diabetes mediates pathological neovascularization, and DFX attenuates poststroke cerebrovascular remodeling and improves neurological outcomes in female diabetic rats. Female control and diabetic animals were treated with DFX or vehicle for 7 days after stroke. Vascular indices, microglial activation, and blood-brain barrier (BBB) integrity were evaluated on day 14. Results from diabetic female rats were partially compared with our previously published findings in male counterparts. Hemin-induced programmed cell death was studied in male and female brain microvascular endothelial cell lines (BMVEC). There was no vasoregression after stroke in either control or diabetic female animals. DFX prevented diabetes-mediated gliovascular remodeling and compromised BBB integrity while improving memory function in diabetes. Comparisons of female and male rats indicated sex differences in cognitive and vascular outcomes. Hemin mediated ferroptosis in both male and female BMVECs. DFX improved survival but had differential effects on ferroptosis signaling in female and male cells. These results suggest that stroke and associated HT do not affect cerebrovascularization in diabetic female rats, but iron chelation may provide a novel therapeutic strategy in the prevention of poststroke memory impairment in females with diabetes via the preservation of gliovascular integrity and improvement of endothelial cell survival.NEW & NOTEWORTHY The current study shows for the first time that diabetes does not promote aberrant cerebrovascularization in female rats. This contrasts with what we reported in male animals in various diabetes models. Deferoxamine preserved recognition memory function in diabetic female animals after stroke. The effect(s) of stroke and deferoxamine on cerebrovascular density and microglial activation also appear(s) to be different in female diabetic rats. Lastly, deferoxamine exerts detrimental effects on animals and BMVECs under control conditions.


Assuntos
Diabetes Mellitus Experimental , Ferroptose , Acidente Vascular Cerebral , Ratos , Feminino , Masculino , Animais , Desferroxamina/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Hemina/farmacologia , Acidente Vascular Cerebral/complicações
6.
Neurochem Int ; 158: 105375, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688299

RESUMO

We and others have previously shown that angiotensin II receptor type 2 receptor (AT2R) is upregulated in the contralesional hemisphere after stroke in normoglycemic Wistar rats. In this study, we examined the expression of AT2R in type 2 diabetic Goto-Kakizaki (GK) rats and control Wistars after stroke. We also tested the contribution of the contralesional AT2R in recovery after stroke through a specific knockdown of the AT2R in this hemisphere only. Two experiments were conducted. In the first experiment, GK rats were subjected to middle cerebral artery occlusion (MCAO) and treated with the angiotensin II receptor type 1 receptor (AT1R) blocker candesartan or saline at reperfusion. Stroke outcomes, as well as AT2R expression, were examined and compared to control Wistars at 24 h. In the second experiment, localized AT2R knockdown was achieved through intrastriatal injection of short hairpin RNA (shRNA) lentiviral particles or non-targeting control into the left-brain hemisphere of Wistar rats. After 14 days, rats were subjected to right MCAO and treated with the AT2R agonist, Compound 21 (C21), or saline for 7 days. Behavioral outcomes were assessed for up to 10 days. In the first experiment, stroke reduced the expression of AT2R in GK rats. Candesartan treatment failed to improve the neurobehavioral outcomes, preserve vascular integrity or reduce oxidative/nitrative stress or apoptotic markers at 24 h post stroke in these animals. In the second experiment, contralesional AT2R knockdown reduced the C21-mediated functional recovery after stroke. In conclusion, contralesional AT2R upregulation after stroke is blunted in diabetic rats which show reduced sensitivity to post-stroke candesartan treatment. Contralesional AT2R could be involved in C21-mediated functional recovery after stroke.


Assuntos
Receptor Tipo 2 de Angiotensina , Acidente Vascular Cerebral , Animais , Diabetes Mellitus Experimental , Imidazóis/farmacologia , Infarto da Artéria Cerebral Média , Ratos , Ratos Wistar , Receptor Tipo 2 de Angiotensina/agonistas , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Sulfonamidas , Tiofenos/farmacologia
7.
Cells ; 10(11)2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34831161

RESUMO

Visual dysfunction resulting from optic neuritis (ON) is one of the most common clinical manifestations of multiple sclerosis (MS), characterized by loss of retinal ganglion cells, thinning of the nerve fiber layer, and inflammation to the optic nerve. Current treatments available for ON or MS are only partially effective, specifically target the inflammatory phase, and have limited effects on long-term disability. Fingolimod (FTY) is an FDA-approved immunomodulatory agent for MS therapy. The objective of the current study was to evaluate the neuroprotective properties of FTY in the cellular model of ON-associated neuronal damage. R28 retinal neuronal cell damage was induced through treatment with tumor necrosis factor-α (TNFα). In our cell viability analysis, FTY treatment showed significantly reduced TNFα-induced neuronal death. Treatment with FTY attenuated the TNFα-induced changes in cell survival and cell stress signaling molecules. Furthermore, immunofluorescence studies performed using various markers indicated that FTY treatment protects the R28 cells against the TNFα-induced neurodegenerative changes by suppressing reactive oxygen species generation and promoting the expression of neuronal markers. In conclusion, our study suggests neuroprotective effects of FTY in an in vitro model of optic neuritis.


Assuntos
Cloridrato de Fingolimode/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neurite Óptica/tratamento farmacológico , Animais , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Neurite Óptica/metabolismo , Neurite Óptica/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/toxicidade , Proteína bcl-X/metabolismo
8.
Vascul Pharmacol ; 141: 106904, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34481068

RESUMO

Angiotensin signaling is known to be sexually dimorphic. Although it is a well-studied target for intervention in stroke and cognitive impairment, female studies are rare. With females suffering a disproportionately greater negative impact of stroke and dementia vs. males, effective interventions are of utmost urgency. The aim of the current study was to determine the impact of activation of the angiotensin II type 2 receptor (AT2R) with the agonist compound 21 (C21) on the development of post-stroke cognitive impairment, after experimental ischemic stroke. Ovariectomized (OVX) spontaneously hypertensive rats (SHRs) were subjected to 1 h of middle cerebral artery occlusion (MCAO). At 24 h, rats with a significant neurologic deficit were randomized to receive either saline or C21 (0.03 mg/kg/day) intraperitoneally (IP) for 5 days, then orally (0.12 mg/kg/day) for a total of 6 weeks. Cognitive function, brain structure by MRI and vascular architecture by microCT angiography were measured. C21 preserved cognitive function, specifically spatial memory, and improved vascular density in the ischemic hemisphere at 6 weeks, reflecting both arteriogenesis and angiogenesis. In conclusion, C21 prevented cognitive impairment after stroke, likely through a mechanism involving vascular protection and restoration.


Assuntos
Receptores de Angiotensina , Acidente Vascular Cerebral , Animais , Cognição , Feminino , Imidazóis , Masculino , Densidade Microvascular , Ratos , Receptor Tipo 2 de Angiotensina , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Sulfonamidas , Tiofenos
9.
Processes (Basel) ; 9(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33954091

RESUMO

The enormous library of pharmaceutical compounds presents endless research avenues. However, several factors limit the therapeutic potential of these drugs, such as drug resistance, stability, off-target toxicity, and inadequate delivery to the site of action. Extracellular vesicles (EVs) are lipid bilayer-delimited particles and are naturally released from cells. Growing evidence shows that EVs have great potential to serve as effective drug carriers. Since EVs can not only transfer biological information, but also effectively deliver hydrophobic drugs into cells, the application of EVs as a novel drug delivery system has attracted considerable scientific interest. Recently, EVs loaded with siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, or therapeutic drugs show improved delivery efficiency and drug effect. In this review, we summarize the methods used for the cargo loading into EVs, including siRNA, miRNA, mRNA, CRISPR/Cas9, proteins, and therapeutic drugs. Furthermore, we also include the recent advance in engineered EVs for drug delivery. Finally, both advantages and challenges of EVs as a new drug delivery system are discussed. Here, we encourage researchers to further develop convenient and reliable loading methods for the potential clinical applications of EVs as drug carriers in the future.

10.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572986

RESUMO

About 70% of stroke victims present with comorbid diseases such as diabetes and hypertension. The integration of comorbidities in pre-clinical experimental design is important in understanding the mechanisms involved in the development of stroke injury and recovery. We recently showed that administration of compound C21, an angiotensin II type 2 receptor agonist, at day 3 post-stroke improved sensorimotor outcomes by lowering neuroinflammation in diabetic male animals. In the current study, we hypothesized that a delayed administration of C21 would also lower chronic inflammation post-stroke in diabetic female animals. Young female diabetic rats were subjected to 1 h of middle cerebral artery occlusion (MCAO). Three days post-stroke, rats were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 4 weeks. The impact of C21 on microglial polarization was analyzed by flow cytometry in vivo and in vitro. Compound 21 treatment improved fine motor skills after MCAO through modulation of the microglia/macrophage inflammatory properties. In addition, C21 increased M2 polarization and reduced the M1:M2 ratio in vitro. In conclusion, delayed administration of C21 downregulates post-stroke inflammation in female diabetic animals. C21 may be a useful therapeutic option to lower neuro-inflammation and improve the post-stroke recovery in diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Receptor Tipo 2 de Angiotensina/agonistas , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Cognição/efeitos dos fármacos , Diabetes Mellitus Experimental/fisiopatologia , Feminino , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/fisiopatologia , Camundongos , Microglia/patologia , Fármacos Neuroprotetores/farmacologia , Ratos , Ratos Wistar , Receptor Tipo 2 de Angiotensina/metabolismo , Acidente Vascular Cerebral/fisiopatologia
11.
Transl Stroke Res ; 12(4): 615-630, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875455

RESUMO

It is a clinically well-established fact that patients with diabetes have very poor stroke outcomes. Yet, the underlying mechanisms remain largely unknown. Our previous studies showed that male diabetic animals show greater hemorrhagic transformation (HT), profound loss of cerebral vasculature in the recovery period, and poor sensorimotor and cognitive outcomes after ischemic stroke. This study aimed to determine the impact of iron chelation with deferoxamine (DFX) on (1) cerebral vascularization patterns and (2) functional outcomes after stroke in control and diabetic rats. After 8 weeks of type 2 diabetes induced by a combination of high-fat diet and low-dose streptozotocin, male control and diabetic animals were subjected to thromboembolic middle cerebral artery occlusion (MCAO) and randomized to vehicle, DFX, or tPA/DFX and followed for 14 days with behavioral tests. Vascular indices (vascular volume and surface area), neurovascular remodeling (AQP4 polarity), and microglia activation were measured. Brain microvascular endothelial cells (BMVEC) from control and diabetic animals were evaluated for the impact of DFX on ferroptotic cell death. DFX treatment prevented vasoregression and microglia activation while improving AQP4 polarity as well as blood-brain barrier permeability by day 14 in diabetic rats. These pathological changes were associated with improvement of functional outcomes. In control rats, DFX did not have an effect. Iron increased markers of ferroptosis and lipid reactive oxygen species (ROS) to a greater extent in BMVECs from diabetic animals, and this was prevented by DFX. These results strongly suggest that (1) HT impacts post-stroke vascularization patterns and recovery responses in diabetes, (2) treatment of bleeding with iron chelation has differential effects on outcomes in comorbid disease conditions, and (3) iron chelation and possibly inhibition of ferroptosis may provide a novel disease-modifying therapeutic strategy in the prevention of post-stroke cognitive impairment in diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Acidente Vascular Cerebral , Animais , Masculino , Ratos , Desferroxamina/uso terapêutico , Diabetes Mellitus Experimental/complicações , Células Endoteliais , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
12.
Sci Rep ; 10(1): 20233, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214598

RESUMO

Post-stroke cognitive impairment (PSCI) is a major source of disability, affecting up to two thirds of stroke survivors with no available therapeutic options. The condition remains understudied in preclinical models due to its delayed presentation. Although hypertension is a leading risk factor for dementia, how ischemic stroke contributes to this neurodegenerative condition is unknown. In this study, we used a model of hypertension to study the development of PSCI and its mechanisms. Spontaneously hypertensive rats (SHR) were compared to normotensive rats and were subjected to 1-h middle cerebral artery occlusion or sham surgery. Novel object recognition, passive avoidance test and Morris water maze were used to assess cognition. In addition, brain magnetic resonance images were obtained 12-weeks post-stroke and tissue was collected for immunohistochemistry and protein quantification. Stroked animals developed impairment in long-term memory at 4-weeks post-stroke despite recovery from motor deficits, with hypertensive animals showing some symptoms of anhedonia. Stroked SHRs displayed grey matter atrophy and had a two-fold increase in apoptosis in the ischemic borderzone and increased markers of inflammatory cell death and DNA damage at 12 weeks post-stroke. This indicates that preexisting hypertension exacerbates the development of secondary neurodegeneration after stroke beyond its acute effects on neurovascular injury.


Assuntos
Disfunção Cognitiva/psicologia , Substância Cinzenta/patologia , Hipertensão/complicações , Acidente Vascular Cerebral/psicologia , Animais , Atrofia , Morte Celular , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Comorbidade , Modelos Animais de Doenças , Hipertensão/patologia , Imageamento por Ressonância Magnética , Masculino , Memória de Longo Prazo , Teste do Labirinto Aquático de Morris , Ratos , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
13.
J Cardiothorac Surg ; 15(1): 211, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758268

RESUMO

BACKGROUND: Three-dimensional (3D) models have the unique ability to replicate individualized cardiac anatomy and may therefore provide clinical benefit. Transcatheter aortic valve implantation (TAVI) currently relies on preoperative imaging for accurate valve sizing, type of valve used, and avoidance of complications. Three-dimensional (3D) modelling may provide benefit for optimal preoperative TAVI planning. The goal of this study is to assess the utility of 3D modelling in the prediction of paravalvular leak (PVL) post TAVI. METHODS: Retrospective analysis of five patients who underwent TAVI at our center. Pre-operative cardiac gated CT images were utilized to create a 3D printed model with true size aortic root dimensions, including the coronary artery ostium location and left ventricular outflow tract. Deployment of the corresponding model and size TAVI valve into the created 3D model at a similar depth of implantation via fluoroscopy was performed for each patient. Degree of PVL was assessed using a closed system with water infusion under pressure over a duration of 5 s. Correlation was made between the volume obtained in the closed loop model during the pressurized period and the degree of PVL reported on the patients post TAVI placement on transthoracic echocardiogram. RESULTS: One female, and four males (age in years ranged from 68 to 87) underwent successful TAVI (0% 30-day mortality). PVL on post procedure TTE ranged from none to trivial. Successful deployment of TAVI valves inside the 3D model occurred in all cases. The average volume of water collected on three trials over 5 s ranged between 19.1-24.1 ml A multivariate linear regression showed significant association between the degree of PVL reported on post-operative transthoracic echocardiogram and the amount of volume detected in the 3D model (difference: -3.9657, 95% CI: (- 4.6761,-3.2554), p < 0.001). CONCLUSIONS: Our experiments show that replicated 3D models have potential clinical utilization in predicting PVL in the TAVI population. Future research into the role of 3D modelling in the field of TAVI should continue to be explored.


Assuntos
Fístula Anastomótica/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/cirurgia , Próteses Valvulares Cardíacas , Impressão Tridimensional , Substituição da Valva Aórtica Transcateter/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Ecocardiografia , Feminino , Fluoroscopia/efeitos adversos , Humanos , Masculino , Complicações Pós-Operatórias/diagnóstico por imagem , Falha de Prótese , Estudos Retrospectivos , Substituição da Valva Aórtica Transcateter/métodos
14.
J Neuroinflammation ; 17(1): 137, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345303

RESUMO

INTRODUCTION: Unfortunately, over 40% of stroke victims have pre-existing diabetes which not only increases their risk of stroke up to 2-6 fold, but also worsens both functional recovery and the severity of cognitive impairment. Our lab has recently linked the chronic inflammation in diabetes to poor functional outcomes and exacerbated cognitive impairment, also known as post-stroke cognitive impairment (PSCI). Although we have shown that the development of PSCI in diabetes is associated with the upregulation and the activation of pro-inflammatory microglia, we have not established direct causation between the two. To this end, we evaluated the role of microglia in the development of PSCI. METHODS: At 13 weeks of age, diabetic animals received bilateral intracerebroventricular (ICV) injections of short hairpin RNA (shRNA) lentiviral particles targeting the colony stimulating factor 1 receptor (CSF1R). After 14 days, animals were subjected to 60 min middle cerebral artery occlusion (MCAO) or sham surgery. Adhesive removal task (ART), novel object recognition (NOR), and 2-trial Y-maze were utilized to evaluate sensorimotor and cognitive function. Tissue from freshly harvested brains was analyzed by flow cytometry and immunohistochemistry. RESULTS: CSF1R silencing resulted in a 94% knockdown of residential microglia to relieve inflammation and improve myelination of white matter in the brain. This prevented cognitive decline in diabetic animals. CONCLUSION: Microglial activation after stroke in diabetes may be causally related to the development of delayed neurodegeneration and PSCI.


Assuntos
Disfunção Cognitiva/etiologia , Diabetes Mellitus Tipo 2/complicações , Inflamação/imunologia , Microglia/imunologia , Acidente Vascular Cerebral/complicações , Animais , Cognição , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/patologia , Masculino , Ratos , Ratos Wistar , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia
15.
JACC Case Rep ; 2(4): 653-657, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34317314

RESUMO

A 21-year-old woman self-ingested an 18-gauge needle that perforated the distal esophagus into the left inferior ventricular myocardium, with migration into the septum. Radiography, computed tomography, and echocardiography imaging characterized the needle's location. Following an initial endoscopy and pericardial tamponade drainage, complete needle removal occurred via median sternotomy and cardiopulmonary bypass. (Level of Difficulty: Intermediate.).

16.
Transl Stroke Res ; 11(4): 762-775, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31792796

RESUMO

A disabling consequence of stroke is cognitive impairment, occurring in 12%-48% of patients, for which there is no therapy. A critical barrier is the lack of understanding of how post-stroke cognitive impairment (PSCI) develops. While 70% of stroke victims present with comorbid diseases such as diabetes and hypertension, the limited use of comorbid disease models in preclinical research further contributes to this lack of progress. To this end, we used a translational model of diabetes to study the development of PSCI. In addition, we evaluated the application of compound 21 (C21), an angiotensin II Type 2 receptor agonist, for the treatment of PSCI by blinding the treatment assignment, setting strict inclusion criteria, and implementing a delayed administration time point. Diabetes was induced by a high-fat diet (HFD) and low-dose streptozotocin (STZ) combination. Control and diabetic rats were subjected to 1 h middle cerebral artery occlusion (MCAO) or sham surgery. Adhesive removal task (ART) and two-trial Y-maze were utilized to test sensorimotor and cognitive function. Three days post-stroke, rats that met the inclusion criteria were administered C21 or vehicle in drinking water at a dose of 0.12 mg/kg/day for 8 weeks. Samples from freshly harvested brains were analyzed by flow cytometry and immunohistochemistry (IHC). Diabetes exacerbated the development of PSCI and increased inflammation and demyelination. Delayed administration of C21 3 days post-stroke reduced mortality and improved sensorimotor and cognitive deficits. It also reduced inflammation and demyelination through modulation of the M1:M2 ratio in the diabetic animals.


Assuntos
Disfunção Cognitiva/prevenção & controle , Diabetes Mellitus Experimental/complicações , Imidazóis/administração & dosagem , Microglia/efeitos dos fármacos , Receptor Tipo 2 de Angiotensina/agonistas , Acidente Vascular Cerebral/complicações , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Polaridade Celular/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Dieta Hiperlipídica , Masculino , Microglia/fisiologia , Ratos Wistar , Estreptozocina/administração & dosagem
17.
Pharmacol Res ; 147: 104349, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315064

RESUMO

Neuroinflammation underlies the etiology of multiple neurodegenerative diseases and stroke. Our understanding of neuroinflammation has evolved in the last few years and major players have been identified. Microglia, the brain resident macrophages, are considered sentinels at the forefront of the neuroinflammatory response to different brain insults. Interestingly, microglia perform other physiological functions in addition to their role in neuroinflammation. Therefore, an updated approach in which modulation, rather than complete elimination of microglia is necessary. In this review, the emerging roles of microglia and their interaction with different components of the neurovascular unit are discussed. In addition, recent data on sex differences in microglial physiology and in the context of stroke will be presented. Finally, the multiplicity of roles assumed by microglia in the pathophysiology of ischemic stroke, and in the presence of co-morbidities such as hypertension and diabetes are summarized.


Assuntos
Microglia , Acidente Vascular Cerebral , Animais , Disfunção Cognitiva , Diabetes Mellitus , Humanos , Hipertensão , Inflamação , Caracteres Sexuais
18.
Drugs R D ; 19(2): 93-115, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31098864

RESUMO

Dementia affects all domains of cognition. The relentless progression of the disease after diagnosis is associated with a 98% incidence of neuropsychiatric symptoms (NPS) at some point in the disease, including depression, psychosis, agitation, aggression, apathy, sleep disturbances, and disinhibition. These symptoms can be severe and lead to excess morbidity and mortality. The purpose of this article was to describe current literature on the medication management of NPS of dementia and highlight approaches to and concerns about the pharmacological treatment of NPS in the USA. Guidelines and expert opinion favor nonpharmacologic management of NPS as first-line management. Unfortunately, lack of adequate caregiver training and a high failure rate eventually result in the use of psychotropic agents in patients with dementia. Various psychotropic medications have been studied, although how they should be used in the management of NPS remains unclear. A systematic approach to evaluation, treatment, and monitoring, along with careful documentation and evidenced-based agent and dose selection, is likely to reduce risk and improve patient outcomes. Considerations should be given to the NPS presentation, including type, frequency, and severity, when weighing the risks and benefits of initiating, continuing, or discontinuing psychotropic management. Use of antidepressants, sedative/hypnotics, antipsychotics, and antiepileptic agents should include a clear and documented analysis of risk and benefit in a given patient with dementia.


Assuntos
Fármacos do Sistema Nervoso Central/uso terapêutico , Demência/tratamento farmacológico , Transtornos Mentais/tratamento farmacológico , Seleção de Pacientes , Demência/complicações , Demência/psicologia , Progressão da Doença , Medicina Baseada em Evidências/métodos , Humanos , Transtornos Mentais/diagnóstico , Transtornos Mentais/psicologia , Medição de Risco , Índice de Gravidade de Doença , Estados Unidos
19.
Pharmacol Res ; 142: 237-250, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30818045

RESUMO

Diabetes increases the risk and worsens the progression of cognitive impairment via the greater occurrence of small vessel disease and stroke. Yet, the underlying mechanisms are not fully understood. It is now accepted that cardiovascular health is critical for brain health and any neurorestorative approaches to prevent/delay cognitive deficits should target the conceptual neurovascular unit (NVU) rather than neurons alone. We have recently shown that there is augmented hippocampal NVU remodeling after a remote ischemic injury in diabetes. NLRP3 inflammasome signaling has been implicated in the development of diabetes and neurodegenerative diseases, but little is known about the impact of NLRP3 activation on functional and structural interaction within the NVU of hippocampus, a critical part of the brain that is involved in forming, organizing, and storing memories. Endothelial cells are at the center of the NVU and produce trophic factors such as brain derived neurotrophic factor (BDNF) contributing to neuronal survival, known as vasotrophic coupling. Therefore, the aims of this study focused on two hypotheses: 1) diabetes negatively impacts hippocampal NVU remodeling and worsens cognitive outcome after stroke, and 2) NLRP3 inhibition with MCC950 will improve NVU remodeling and cognitive outcome following stroke via vasotrophic (un)coupling between endothelial cells and hippocampal neurons. Stroke was induced through a 90-min transient middle cerebral artery occlusion (MCAO) in control and high-fat diet/streptozotocin-induced (HFD/STZ) diabetic male Wistar rats. Saline or MCC950 (3 mg/kg), an inhibitor of NLRP3, was injected at 1 and 3 h after reperfusion. Cognition was assessed over time and neuronal density, blood-brain barrier (BBB) permeability as well as NVU remodeling (aquaporin-4 [AQP4] polarity) was measured on day 14 after stroke. BDNF was measured in endothelial and hippocampal neuronal cultures under hypoxic and diabetes-mimicking condition with and without NLRP3 inhibition. Diabetes increased neuronal degeneration and BBB permeability, disrupted AQP4 polarity, impaired cognitive function and amplified NLRP3 activation after ischemia. Inhibition with MCC950 improved cognitive function and vascular integrity after stroke in diabetic animals and prevented hypoxia-mediated decrease in BDNF secretion. These results are the first to provide essential data showing MCC950 has the potential to become a therapeutic to prevent neurovascular remodeling and worsened cognitive decline in diabetic patients following stroke.


Assuntos
Disfunção Cognitiva/imunologia , Diabetes Mellitus Experimental/imunologia , Furanos/farmacologia , Infarto da Artéria Cerebral Média/imunologia , Inflamassomos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fármacos Neuroprotetores/farmacologia , Sulfonamidas/farmacologia , Animais , Linhagem Celular , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Furanos/uso terapêutico , Compostos Heterocíclicos de 4 ou mais Anéis , Hipocampo/efeitos dos fármacos , Hipocampo/imunologia , Hipocampo/patologia , Indenos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Wistar , Sulfonamidas/uso terapêutico , Sulfonas
20.
Arterioscler Thromb Vasc Biol ; 39(4): 593-602, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30816798

RESUMO

There is a complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of cerebrovascular function and integrity has a central role in this sophisticated communication within the brain, and any derangements can have deleterious acute and chronic consequences. In almost all forms of cognitive impairment, from mild to Alzheimer disease, there are changes in cerebrovascular function and structure leading to decreased cerebral blood flow, which may initiate or worsen cognitive impairment. In this focused review, we discuss the contribution of 2 major vasoactive pathways to cerebrovascular dysfunction and cognitive impairment in an effort to identify early intervention strategies.


Assuntos
Circulação Cerebrovascular , Transtornos Cognitivos/fisiopatologia , Cognição/fisiologia , Endotelinas/fisiologia , Sistema Renina-Angiotensina/fisiologia , Doença de Alzheimer/fisiopatologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/farmacocinética , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Barreira Hematoencefálica , Encéfalo/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Endotélio Vascular/fisiologia , Previsões , Humanos , Receptores de Angiotensina/efeitos dos fármacos , Receptores de Angiotensina/fisiologia , Receptores de Endotelina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...